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ABSTRACT 
With the increase in the number of processing elements 
integrated in HW platforms, the development of new 
solutions helping engineers to design concurrent 
applications is gaining greater interest. Code refinements 
required to parallelize sequential algorithms are usually 
quite complex, and do not guarantee that the decisions 
taken will provide the expected performance result, 
requiring a costly and iterative design process. To solve this 
problem, this paper presents a methodology that enables 
designers to define and automatically create different 
concurrent architectures for the system, only modifying 
different parameters in the UML model. The main idea is to 
automatically modify the communication between 
components, adding to the typical configurable options of 
performing synchronous, asynchronous or buffered calls the 
idea of enabling parallelization by dividing one service call 
into several concurrent calls, each one operating with part 
of the data. Examples of use of this idea with video 
applications are presented, demonstrating the performance 
improvement obtained in the final system. 
 

Index Terms— UML/MARTE, CONCURERNCY, 
CODE SYNTHESYS 
 

1. INTRODUCTION 
The evolution of fabrication technologies is enabling the 

development of increasingly powerful chips containing 
multiple processors. These chips support different types of 
architectures, from symmetric structures, to heterogeneous 
implementations, including CPUs, DSPs or GPUs. As a 
result, the development of concurrent applications capable 
of taking advantage of all the computational power of these 
chips is becoming a critical issue. 

However, transforming sequential codes in concurrent 
applications, while also satisfying the associated real-time 
constraints is a very complex process. The reason is that this 
process usually implies two different steps. First, it is 
necessary to generate the refined concurrent code. After that, 
designers have to evaluate whether the resulting solution is 
really capable of obtaining maximum performance for the 
multi-processor HW. Since adequate management of fork-
join solutions, ensuring correct synchronization, is a real 
challenge on its own, the combination of both steps usually 
leads to a very costly iterative process.  

To deal with this issue, we propose taking advantage of 
the latter ideas for designing at high abstraction levels. This 
approach provides an effective way of managing different 

results while maintaining the global perspective. Then, the 
development of tools that automatically apply all the details 
reflected in the high-level model in the final code generation 
can help designers to face the challenge of overcoming 
system concurrency. 

One of the most common approaches applied for high-
level system modelling is the use of UML. However, UML 
is usually too generic for its application to specific domains, 
such as embedded systems. To get round this limitation the 
OMG has proposed a standard called MARTE, oriented to 
enabling designers to include all the information related to 
embedded, real-time system designs in the UML models. 
From this input, some tools are appearing, proposing 
solutions to apply the information in the model to final 
implementations through code synthesis. For example, it is 
possible to define different characteristics in system 
communications such as synchronism 
(synchronous/asynchronous) and buffers (fifos)  [6]. As a 
result, designers can modify some channel semantics in the 
model and automatically obtain wrapper codes that enable 
direct evaluation of the modelled solution in the target 
board. 

In this way, the paper proposes a solution that goes 
beyond that initial approach. The basic idea can be easily 
shown with a simple example. When analyzing images, it is 
usually possible to divide the image in parts, operate with 
the different parts separately and then join all the results to 
continue further processing. Following this idea, we propose 
a solution where designers can automatically provide 
information in the UML model. From this model, the 
infrastructure developed automatically generates wrappers 
capable of implementing different communication solutions, 
such as dividing the information sent in a service call in 
order to launch multiple copies of the service receiving part 
of the data, and joining the results at the end. Additionally, 
this approach can be chained when one service calls another 
service and so on, the final system being a very complex 
concurrent architecture.  

This technique has the advantage that the concurrent 
architecture is mainly integrated in the automatically 
generated communication wrappers. As a result, it is mainly 
hidden from the functional code directly developed by the 
designer, greatly reducing designer effort. 

For this purpose, the paper starts by presenting an 
introduction to the state of the art in the area, and then it 
introduces the global methodology; how to integrate all the 
required information for data splitting into the UML model, 
and, finally, how the tool automatically creates the wrappers 



required in order to generate the resulting concurrency. 
Finally, some results and conclusions are provided. 
 

2. STATE OF THE ART 
The development of tools that enable automatic 

generation of communication and concurrency 
infrastructures for component-based systems is a clear need 
for SW designers who wish to reduce their effort in the 
implementation of complex systems. To achieve this goal, 
model-driven design methodologies are commonly adopted 
to handle the design of large functionalities  [5]. The latest 
design methodologies start from high-level UML models 
combined with algorithmic codes (e.g. C, C++, Matlab, etc.) 
of the different system components  [16].  

In addition, from these UML models, synthesis tools can 
extract the information necessary to explore different 
configurations in the model. These configurations can 
include changing the resource allocation, the application’s 
concurrent behaviour, and the communication semantics. 

In this context, UML is a very common way to handle the 
design of embedded systems.  [11] and  [12] focuses on the 
importance of model-driven architectures. [11] pays special 
attention to the importance of UML models for industrial 
applications and the effort that they require, and [12] is 
focused on a particular aspect of MDE concerning model 
transformations and code generation. The basic model-
driven architecture pattern requires the definition of a 
platform-independent model (PIM) and its automated 
mapping to one or more platform-specific models (PSMs). 

Moreover, different semantic shortcomings have been 
detected in UML, resulting in the generation of different 
profiles for specific application scopes. At this point, 
MARTE  [1] represents the OMG standard profile for 
Modelling and Analysis of Real-Time and Embedded 
systems. Using it,  [14] proposes a methodology for the 
design of real-time embedded systems which supports UML 
and the MARTE profile for system modelling. 

From the point of view of automatic code synthesis from 
UML models,  [7] focuses on the automatic generation of 
communication from UML communication models to 
generate test cases, to run programs and to obtain the 
execution traces and compare with the diagram activities. 
There is a proposal of Interface Generation in  [8], for 
Incompatible Intellectual Properties. Its aim is to provide 
System on Chip designers with a UML-based environment. 
They model the IP as a UML component with a well-defined 
interface. However, these approaches are oriented to 
automatic generation of test cases and interfaces for 
verification, and do not allow structure systems to be 
designed at high-level. 

In  [9], an approach to bridge the gap between UML 
modelling and SystemC-based verification and synthesis 
environments is presented. In  [10], another approach 
enabling generation of complete synthesizable HDL code 
from UML models is presented, while  [15] presents a 

methodology which starts from UML sequence diagrams 
with MARTE timing constraints and generates VHDL 
models with checkers. All of these are more focused on 
diagrams of communication and sequence in order to 
generate automatic code. In this paper the code is generated 
from the model elements (i.e.: interfaces, channels, 
components) captured in UML class diagrams and UML 
composite structure diagrams. 

Several UML-based methodologies also focus on 
HW/SW communication synthesis. In  [17], a semi-automatic 
solution using Remote Method Invocation (RMI) semantics 
for generating HW/SW infrastructure from UML models is 
presented.  In  [18], a method for synthesizing interfaces for 
integration of heterogeneous IP (Intellectual property) based 
on UML models is proposed. The framework supports both 
interface protocol customization and glue logic generation, 
thereby maximizing IP integration. Reference  [13] describes 
a technique to synthesize multitasking support and 
communication infrastructure from UML-ESL description 
for virtual platform simulation.  

Nevertheless, these approaches are limited when 
designers need to optimize the concurrent architecture of the 
system. Thus, the proposed approach enables the definition 
of channel semantics (capacity, pool resources, blocking and 
non blocking calls, restrictive access to interface functions) 
to control the behaviour of the application through data 
splitting, in addition to enabling automatic concurrency 
generation.  
 

3. AUTOMATIC CODE GENERATION 
This paper presents an approach oriented to automatically 

generating concurrency from UML/MARTE models. It 
extends the paper presented in  [6], where the initial ideas 
were presented, providing complete solutions for 
concurrency generation, such as the use of data splitting, and 
providing more results. 

The proposed approach starts from a platform-
independent model of the system. In this model, the 
functionality is structured in components that provide and 
require services (Figure 1), following a component-based 
methodology. Additionally, in order to support the mapping 
to non symmetric systems, to ensure correct access to shared 
information and to enable communication optimization, the 
system mapping is performed in two steps: first components 
are mapped to memory spaces and then these memory 
spaces are mapped to resources. 

Considering a HW platform and a resource allocation, the 
implemented framework automatically generates the 
wrapper codes required to execute and interconnect the 
different services, in order to obtain the implementation 
binaries. As a result, it is possible to increase the 
concurrency of the final system in order to optimize the use 
of the target platform. In order to provide this additional 
concurrency, the infrastructure takes advantage of the 
information specified in the communication interfaces. 



 

 

Figure 1: Proposed Synthesis Flow 

The resulting communication infrastructure supports the 
definition of synchronism (synchronous/asynchronous) and 
buffers (fifos) to implement a pipelined architecture, but it 
also provides a technique for splitting data transfers in order 
to enable computing in parallel part of the transferred data-
streams (Figure 2). The user can combine all these 
communication semantics in the UML model, and then the 
infrastructure generates the final implementation also 
considering the mapping of the components, using inter-
thread, inter-process or inter-node communication services 
as required.  

From this UML/MARTE model, an infrastructure 
integrated in Eclipse generates all the elements necessary to 
create the binary files required for simulation or execution in 
the physical platform. The graphical tool used to create the 
UML/MARTE model is Papyrus  [2]. A code generator has 
been developed as a set of generation templates written in 
the standard MTL language  [4]. The development has been 
done through Acceleo  [3], a code generation framework 
fully integrated in Eclipse. 

Two kinds of elements are directly generated from the 
information included in the UML model. First, the C 
wrappers are generated. These wrappers run the functional 
code and communicate the interfaces of the components in 
different memory spaces using the resources of the platform. 
Synchronization and concurrency management is also 
included in these wrappers. 

Secondly, “makefiles” and linker scripts are generated to 
enable automatic execution of the compilation processes. 

As a result, one executable is obtained for each memory 
space at the end of the generation process. The executable is 
compiled for the target HW resource where it is allocated. 
To achieve this, the generated wrappers contain the entire 
SW infrastructure required for each memory space to 
operate and communicate with the other executables. 

In this process, the generation of concurrency, takes 
advantage of the information on component communications 
described by channels, interfaces, data types and resource 
allocations in the UML/MARTE model  [6]. 

 

4. CONCURRENCY GENERATION 
Concurrency is generated automatically from the 

application of the different communication architectures 
described in Figure 2. From the single executable flow 
produced by an initial, sequential code, the definition of 
asynchronous calls and pipelines provokes the generation of 
additional threads. An asynchronous call requires a new 
thread, in order to enable the client to continue with its task 
while the server executes the service. In a similar way, 
buffered channels enable the implementation of pipelines, 
where each component has its own execution thread, reading 
and writing in channel fifos independently of the client 
operation. At the same time, data splitting enables multiple 
instances of the same service to be run in parallel, requiring 
an additional thread per service. 

 

Figure 2: Supported architectures: Sequential (1), 
Asynchronous (2), Pipeline (3), Data splitting (4), Combined(5) 

As long as channel semantics require concurrency 
generation, resource allocation has the same effect. While 
the execution of service calls provided by a component 
running in the same process can be performed by the calling 
thread, calls to services in other processes or other OSs 
require a concurrent infrastructure to look for incoming 
requests and launch the execution of the services needed. 

The ad-hoc automatic generation of communication 
wrapper codes considers all these possibilities in 
combination, so it is an extremely difficult task. To deal with 
it, the proposed approach is based on a three-layer method. 
All communications on both the client and the server side 
are implemented handling concurrent generation in the 
highest layer, communication stack management in a second 
layer, and communication transfers in the lowest layer. 

Thus, the first layer is completely dependent on the 
communication semantics, but independent of the resource 
allocation. The second layer generates all the resources 
required to handle data transfers depending on the 
allocation, but mainly independently of the channel 
semantics. Finally, the third layer contains the basic 
communication mechanisms that are only dependent on the 
platform architecture, but not on allocation or 
communication semantics. 

Among these basic communication functions, the first 
possibility is that both components are in the same memory 
partition, the communication is direct. The second 



possibility is that the communication is performed between 
components in different memory spaces, but the memory 
spaces are allocated in the same OS. Thus, data is passed 
through OS calls, such as FIFOs. Finally, the allocation of 
the memory partitions can be in different operating systems. 
Then, a package transfer solution such as TCP/IP is used. 

 
5. CHANNEL IMPLEMENTATION 

The model description is based on components which are 
connected by channels, providing services. These services 
are grouped in interfaces. Additionally, for each channel, 
there is one end which requires an interface and another end 
which provides the interface. 

Thus, the communication mechanism is defined in the 
UML/MARTE model as the tuple composed of the channel 
and its supported interfaces. Thus, the semantics of each 
channel can be easily changed by modifying the semantics of 
the attributes of a channel and the types of the interface. 

 
Figure 3: Interfaces inheritance 

Specifically, it is possible to modify the types of blockade 
associated with the function requests communicated through 
the channel (attributes blockingFunctionCalls, 
blockingFunctionReturn) and to consider the capacity of the 
channel to store service requests (attribute resMult). 
According to these channel attributes, the client application 
component can be blocked or not until the function is 
attended, waiting for function returns, modifying the client’s 
concurrent behaviour. On the server side, each request 
produces a new thread to enter in the component. However, 
the maximum number of threads in an application 
component available to attend to requests can be specified in 
the model (attribute srPoolSize). This application 
component characteristic can model different internal 
concurrent structures of the application component, 
producing a significant impact on system performance. 

Other features that can be specified for the channels are 
the priority of the function request being dealt with by the 
server application of this channel (attribute priority) and the 
maximum time for a function request to be completed 
(attribute timeout). The priority is used by the server 
scheduler to integrate and sort incoming requests received 
from different sources. When the server has an available 
thread in the pool, the scheduler launches the request from 
the channel with highest priority. The timeout is used to 
awaken the thread suspended by the blocks described above. 

Finally, the interface types can also define the semantics 
of the services included in them, either sequential, guarded 
or concurrent  [19]. Each interface can only have operations 
with one of the previous semantics. 

The combination of the interface semantic features and 
the channel semantic features enables the possibility of 
modelling a wide set of different, communication 
alternatives. In order to automatically integrate all these 
semantics in the final binary without modifying the user-
provided, functional code, functions are redirected at 
compilation time. This means that, when a component needs 
to execute a service from another component, a compiler 
macro makes it call an alternative function, instead of the 
service itself. This new function generates a request packet 
according to the information about interface service and 
writes it in the channel, generating the associated 
concurrency. The channel manages the packet and sends it to 
the provided application component. Then, the provided 
component receives it according to the information from the 
request packet and executes it when possible. Finally, the 
server component sends the response through the channel 
and the required component updates its execution flow. 
 

5.1 DATA SPLITTING 
In order to increase generated concurrency, data packets 

sent in a service request can be split into parts, enabling 
several concurrent requests to be called. This data stream 
splitting is used to provoke the automatic call of multiple 
concurrent copies of the same function, which involves the 
creation of multiple threads in the application components.  

In the UML/MARTE methodology, interfaces are used 
for enabling the splitting of data streams since they can be 
typed. The idea is that, if the interface on the client side has 
greater data sizes than on the server side, then data streams 
generated by the client are split considering the data sizes 
accepted by the server. Thus, the UML/MARTE interfaces 
enable the definition of the different data types required for 
specifying the parameters of the interface functions. The 
UML Data Types are used to define specific data types as 
arrays and structures. 

The data stream splitting is captured in the model by 
inheritance between interfaces. This modelling mechanism 
enables new interfaces to be defined that are a generalization 
of a previous one. These new interfaces (in Figure 3, the 
interfaces “Interface_MEMC_TCTU_Exploration_2” and 
“Interface_MEMC_TCTU_Exploration_4”) differ from the 
previous interfaces (in Figure 3, the interfaces 
“Interface_MEMC_TCTU”) in one parameter. Specifically, 
the difference among these interfaces is the size of the data 
type that specifies a parameter. In the case in Figure 3, a 
parameter called “explor” that is typed by different array 
data types with different size. 

Additionally, the inherence of interfaces can be used for 
joining concurrent independent flows. In order to be 
executed, an application component should have available 



data to be triggered. However, these data come from two 
different, independent, concurrent flows. In order to specify 
that a parameter represents an element to be joined, the 
corresponding join parameters have to be specified in the 
generalized interfaces; only these parameters have to be 
specified in generalized interfaces. Then, these parameters 
are not typed with data type. In this case the code generator 
knows that the parameter is for joining concurrent flows. 

The combination of the previous concurrency 
specification mechanism provides the designer with a wide 
palette of modelling resources in order to specify different 
concurrent structure alternatives in an easy and fast way. 

For each component a file is generated. This file contains 
the execution threads of the component and the functions to 
manage the channel ends. On the one hand, if the component 
is a server, the component contains a function to manage the 
incoming requests for each channel and another to schedule 
the services to carry out. On the other hand, if the 
component is a client, the component has a function to 
manage the responses of the channel. These functions are the 
functions triggered by the main function. 

Finally, wrappers are automatically generated. There are 
two kinds of wrapper, either provided or required ones. On 
the one hand, the required wrapper is a file with a function 
for each interface service function that encapsulates the 
original call of the function and generates a request structure 
with all the information about the required service (function 
identifier, parameters, etc.), and finally sends the structure 
information through the channel. On the other hand, the 
provider wrapper file has a function which takes the 
information from the incoming request to execute the 
correspondent service.  

 
6. COMMUNICATION LIBRARY INTERFACE 
The communication library is the complement of the C 

code generator. The library is implemented in C code too, 
and it consists of a set of C files that implement the functions 
in order to perform the communications and the management 
of the channels at both ends (required and provided). This 
library facilitates its reusability and minimizes the amount of 
generated code lines. 

6.1 DATA PARTITION IMPLEMENTATION 
As mentioned above, data partitioning is performed by 

the different parameter data sizes of the interface provided 
and interface required.  

The channel checks the size of the interface service 
parameters and this produces alternative situations. On the 
one hand, we have the situation where the data size of the 
interface’s required service is equal to the size of the data in 
the provided interface service. This situation does not 
produce extra operations. On the other hand, the size of 
interfaces services can be different. Firstly, if the required 
service size is greater, the channel generates a proportional 
number of request structure children with the same 
information as the parent, only changing the data to be 

partitioned. Then requests are performed as described in 
previous sections. When the requests are completed, the 
channel modifies the data of a parent one and frees the 
memory of the partial requests. Secondly, if provided size is 
greater, the channel waits for all the requests to arrive. When 
they are all available, the channel generates a parent request 
with the information and merges the data. A thread service is 
then executed to deal with the parent request and, when 
completed, the channel updates the request parameters of 
child requests. 

 
6.2 JOINING CONCURRENT FLOWS  

After splitting data and performing concurrent calls, it is 
usually necessary to merge these flows to continue the 
execution of the system. This mechanism enables the 
synchronization between two concurrent flows of execution 
when they require the same interface and this interface uses 
parameters from these flows. 

The generated wrappers create request structures with the 
parameters of the parent interface and the parameters of 
availability are set to null. Then the wrapper generates a 
function to synchronize both flows until all parameters are 
available. This synchronization is performed with 
semaphores and all flows are blocked except one which has 
access to the parent service interface: When the service 
finishes, the other requests are awaken. 
 

7 USE CASES  
An MPEG-4 encoder implementation is used in this 

paper to asses the proposed methodology. It enables 
different system configurations to be established by 
modifying the channel semantics of the model. The MPEG-4 
encoder is an industry-standard, consisting of a motion-
estimation and compensation (MEMC) phase followed by 
transformation (TCTU) and entropy coding (EC) phases. 
Finally, the data is packed (BP) (Figure 4). From an initial 
sequential implementation, channel semantics enable the 
definition of different parallel regions operating with split 
data. Automatically generated code controls the 
concurrency, data management and synchronization required 
to interconnect all the components according to Figure 4. 

 

Figure 4: Explored MPEG-4 Configurations 
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In case a), clients always wait for server completion to 
continue. In case b), buffered calls are used to implement a 
pipelined architecture. The cases c), d) and e) use data 
partitioning. In case c), the interface definition enables the 
execution to use two threads in order to compute a frame in 
MEMC and TCTU, blocking components until finishing the 
frame encoding process. Case d) uses data partition, 
generating four threads with pipeline. Finally, case e) uses 
data partition for two threads in MEMC and four threads in 
TCTU without blocking. 

The results obtained from applying the different 
configurations in the MPEG-4 encoder were evaluated in the 
OMAP-4 (PandaBoard) HW platform. 
CASE EXECUTION TIME  

a) Sequential 21.05 seconds 
b) Pipeline 15.70 seconds 
c) Sequential bi concurrent 13.01 seconds 
d) Pipeline tetra concurrent 11.11 seconds 
e) Bi and tetra concurrent 12.89 seconds 

Table 1: MPEG4 Simulation on OMAP-4 

In order to test the merging mechanism, a stereoscopic 
vision use case was applied. This system takes two images 
that are initially rectified to enable their later comparison in 
order to extract the position of the different objects of the 
image with respect to the observer. Both images are initially 
processing in parallel, so two image processing flows are 
defined for that purpose, one for the right image and a 
second one for the left image. Each image is pre-processed, 
checking whether the image has enough quality. Then, a 
classical two-frame stereo matching algorithm starts.  

The Stereovision use case was executed in different 
platforms: on OMAP-3 (BeagleBoard) using local 
communications, on a TCP-IP system between OMAP-3 and 
OMAP-4 and on a SPEAr-600 (double-core architecture 
with different Operating Systems) using TCP-IP. 
PLATFORM EXECUTION TIME 

Beagle 315.960 seconds 
Beagle-Panda 261.161 seconds 
SPEAr-600 265.878 seconds 

Table 2: Stereovision Simulation 

9. CONCLUSIONS AND FUTURE WORK 
The paper presents a methodology that enables the 

application of different concurrency architectures in a 
system described in UML/MARTE, modifying 
communication between components. From the 
UML/MARTE model, some code files are generated in 
order to compile them with the functional code of the 
application. The whole C code is compiled with generated 
“makefiles” and the final binary executables are created for 
the target platform. 

In this context, data splitting is used to increase system 
concurrency enabling service calls to be divided in a set of 
smaller concurrent operations. 

This methodology can be used to optimize the resources 
used in embedded systems, since it enables different 
concurrent architectures to be explored without requiring 
designer effort, due to the implemented code generation 
process. 
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