AUTOMATIC CONCURRENCY GENERATION THROUGH COMMUNICATION DATA
SPLITTING BASED ON UML/MARTE MODELS

ABSTRACT

With the increase in the number of processing elements
integrated in HW platforms, the development of new
solutions helping engineers to design concurrent
applications is gaining greater interest. Code refinements
required to parallelize sequential algorithms are usually
quite complex, and do not guarantee that the decisions
taken will provide the expected performance result,
requiring a costly and iterative design process. To solve this
problem, this paper presents a methodology that enables
designers to define and automatically create different
concurrent architectures for the system, only modifying
different parametersin the UML model. The main idea is to
automatically modify the communication between
components, adding to the typical configurable options of
performing synchronous, asynchronous or buffered calls the
idea of enabling parallelization by dividing one service call
into several concurrent calls, each one operating with part
of the data. Examples of use of this idea with video
applications are presented, demonstrating the performance
improvement obtained in the final system.

Index Terms— UML/MARTE, CONCURERNCY,
CODE SYNTHESYS

1. INTRODUCTION
The evolution of fabrication technologies is enadplthe
development of increasingly powerful chips contagni
multiple processors. These chips support diffetgpés of
architectures, from symmetric structures, to hefeneous

results while maintaining the global perspectiveef, the
development of tools that automatically apply b# tdetails
reflected in the high-level model in the final caglneration
can help designers to face the challenge of oveargpm
system concurrency.

One of the most common approaches applied for high-
level system modelling is the use of UML. HowevdNL
is usually too generic for its application to sfieclomains,
such as embedded systems. To get round this lionitéte
OMG has proposed a standard called MARTE, orietted
enabling designers to include all the informatiefated to
embedded, real-time system designs in the UML nsodel
From this input, some tools are appearing, progpsin
solutions to apply the information in the model final
implementations through code synthesis. For exaniple
possible to define different characteristics in tsys
communications such as synchronism
(synchronous/asynchronous) and buffers (fifos) 8% a
result, designers can modify some channel semaintittse
model and automatically obtain wrapper codes thatbke
direct evaluation of the modelled solution in trerget
board.

In this way, the paper proposes a solution thatsgoe
beyond that initial approach. The basic idea caredsly
shown with a simple example. When analyzing imades,
usually possible to divide the image in parts, apemith
the different parts separately and then join &l thsults to
continue further processing. Following this ide&, pvopose
a solution where designers can automatically peovid
information in the UML model. From this model, the

implementations, including CPUs, DSPs or GPUs. As #nfrastructure developed automatically generateappers

result, the development of concurrent applicatioapable
of taking advantage of all the computational poakthese
chips is becoming a critical issue.

capable of implementing different communicatiornusiohs,
such as dividing the information sent in a servied in
order to launch multiple copies of the service éng part

However, transforming sequential codes in conctirrerof the data, and joining the results at the endli#ahally,

applications, while also satisfying the associateal-time
constraints is a very complex process. The reastmi this
process usually implies two different steps. Fint,is
necessary to generate the refined concurrent édte.that,
designers have to evaluate whether the resultihgico is
really capable of obtaining maximum performance tfoe
multi-processor HW. Since adequate management r&f fo
join solutions, ensuring correct synchronizatios,ai real
challenge on its own, the combination of both steqsally
leads to a very costly iterative process.

To deal with this issue, we propose taking advantaiy
the latter ideas for designing at high abstractewels. This
approach provides an effective way of managingekffit

this approach can be chained when one service aadther
service and so on, the final system being a vempdex
concurrent architecture.

This techniqgue has the advantage that the condurren
architecture is mainly integrated in the automdiiica
generated communication wrappers. As a resuls, ritainly
hidden from the functional code directly develogmdthe
designer, greatly reducing designer effort.

For this purpose, the paper starts by presenting an
introduction to the state of the art in the araad ¢hen it
introduces the global methodology; how to integ@tehe
required information for data splitting into the Wkiodel,
and, finally, how the tool automatically creates ttrappers

required in order to generate the resulting comnway. methodology which starts from UML sequence diagrams

Finally, some results and conclusions are provided. with MARTE timing constraints and generates VHDL
models with checkers. All of these are more focused
2. STATE OF THE ART diagrams of communication and sequence in order to

The development of tools that enable automatigenerate automatic code. In this paper the codensrated
generation of communication and concurrencyfrom the model elements (i.e.: interfaces, channels
infrastructures for component-based systems igar cleed components) captured in UML class diagrams and UML
for SW designers who wish to reduce their efforttiie composite structure diagrams.
implementation of complex systems. To achieve tjual, Several UML-based methodologies also focus on
model-driven design methodologies are commonly tetbp HW/SW communication synthesis. In [17], a semaudtic
to handle the design of large functionalities [bhe latest solution using Remote Method Invocation (RMI) setitan
design methodologies start from high-level UML migde for generating HW/SW infrastructure from UML modéds
combined with algorithmic codes (e.g. C, C++, Matlatc.) presented. In [18], a method for synthesizingriiaices for
of the different system components [16]. integration of heterogeneous IP (Intellectual propebased

In addition, from these UML models, synthesis tazd® on UML models is proposed. The framework suppooth b
extract the information necessary to explore difer interface protocol customization and glue logic eyation,
configurations in the model. These configuratiorsn ¢ thereby maximizing IP integration. Reference [@8%cribes
include changing the resource allocation, the appbn’s a techniqgue to synthesize multitasking support and

concurrent behaviour, and the communication segnti communication infrastructure from UML-ESL descripti
In this context, UML is a very common way to hantle for virtual platform simulation.
design of embedded systems. [11] and [12] focosethe Nevertheless, these approaches are limited when

importance of model-driven architectures. [11] pagecial designers need to optimize the concurrent architecif the
attention to the importance of UML models for intligd ~ system. Thus, the proposed approach enables thétidef
applications and the effort that they require, §b#8] is of channel semantics (capacity, pool resourcegkbig and
focused on a particular aspect of MDE concerningleho non blocking calls, restrictive access to interfaaections)
transformations and code generation. The basic lnoddao control the behaviour of the application throudata
driven architecture pattern requires the definitioh a splitting, in addition to enabling automatic coreurcy
platform-independent model (PIM) and its automatedyeneration.
mapping to one or more platform-specific modelsNBES

Moreover, different semantic shortcomings have been 3. AUTOMATIC CODE GENERATION
detected in UML, resulting in the generation offefiént This paper presents an approach oriented to autathat
profiles for specific application scopes. At thioimd, generating concurrency from UML/MARTE models. It
MARTE [1] represents the OMG standard profile forextends the paper presented in [6], where tha&lirndeas
Modelling and Analysis of Real-Time and Embeddedwere presented, providing complete solutions for
systems. Using it, [14] proposes a methodology tfer concurrency generation, such as the use of dattirgpland
design of real-time embedded systems which supjhivis providing more results.
and the MARTE profile for system modelling. The proposed approach starts from a platform-

From the point of view of automatic code synthéisn independent model of the system. In this model, the
UML models, [7] focuses on the automatic generatid functionality is structured in components that pdevand
communication from UML communication models to require services (Figure 1), following a componeased
generate test cases, to run programs and to olth@in methodology. Additionally, in order to support timapping
execution traces and compare with the diagram iiey to non symmetric systems, to ensure correct adoesdsared
There is a proposal of Interface Generation in, f8F information and to enable communication optimizatithe
Incompatible Intellectual Properties. Its aim isgoovide system mapping is performed in two steps: first gonents
System on Chip designers with a UML-based envirarime are mapped to memory spaces and then these memory
They model the IP as a UML component with a weflirdal spaces are mapped to resources.
interface. However, these approaches are oriented t Considering a HW platform and a resource allocatioe
automatic generation of test cases and interfaces fimplemented framework automatically generates the
verification, and do not allow structure systems lie wrapper codes required to execute and intercontiert
designed at high-level. different services, in order to obtain the impletation

In [9], an approach to bridge the gap between UMLlbinaries. As a result, it is possible to increase t
modelling and SystemC-based verification and syithe concurrency of the final system in order to optienihe use
environments is presented. In [10], another apgroa of the target platform. In order to provide thisdéidbnal
enabling generation of complete synthesizable HBHec concurrency, the infrastructure takes advantage thef
from UML models is presented, while [15] presemts information specified in the communication intedac

UML
< le-}mu{ PDM

selecteapsm) J|

)

‘ UML Generator ‘
| — TNy —
[/Communication\ /Compilation Linker Basic
wrappers makefiles Scripts communic.
N o T 2 libraries
\ Manual iteration .
II
74)

Simulation tool:
ISS,
Virtualization

Physical
platform

Figure 1: Proposed Synthesis Flow

The resulting communication infrastructure suppdints
definition of synchronism (synchronous/asynchrohoarsd
buffers (fifos) to implement a pipelined architeetubut it
also provides a technique for splitting data trarsfn order
to enable computing in parallel part of the transfé data-

streams (Figure 2). The user can combine all these

communication semantics in the UML model, and then

infrastructure generates the final implementatiolso a
considering the mapping of the components, usirigrdin
thread, inter-process or inter-node communicatienvises

as required.

From this UML/MARTE model, an
integrated in Eclipse generates all the elementsssary to
create the binary files required for simulatioregecution in
the physical platform. The graphical tool used teate the
UML/MARTE model is Papyrus [2]. A code generat@sh
been developed as a set of generation templatéemnvin
the standard MTL language [4]. The developmentheen
done through Acceleo [3], a code generation fraomkw
fully integrated in Eclipse.

Two kinds of elements are directly generated frém t
information included in the UML model.
wrappers are generated. These wrappers run thédnac
code and communicate the interfaces of the compgsrien
different memory spaces using the resources opldtéorm.

infrastructure

First, the C
wrapper

4. CONCURRENCY GENERATION
Concurrency is generated automatically from
application of the different communication architees
described in Figure 2. From the single executaldev f
produced by an initial, sequential code, the d&dini of
asynchronous calls and pipelines provokes the gé&oarof
additional threads. An asynchronous call requiresew
thread, in order to enable the client to continuid s task
while the server executes the service. In a simiay,
buffered channels enable the implementation of liies,
where each component has its own execution threadijng
and writing in channel fifos independently of théeiat
operation. At the same time, data splitting enabiedtiple
instances of the same service to be run in paradiquiring

an additional thread per service.
0]

i

Figure 2: Supported architectures: Sequential (1),
Asynchronous (2), Pipeline (3), Data splitting @nhmbined(5)

the

[B B A

As long as channel semantics require concurrency

generation, resource allocation has the same efféhtle
the execution of service calls provided by a congmbn
running in the same process can be performed bgatiag
thread, calls to services in other processes oero@Ss
require a concurrent infrastructure to look for dming
requests and launch the execution of the servieeded.
The ad-hoc automatic generation of communication
codes considers all these possibilities
combination, so it is an extremely difficult taglo deal with
it, the proposed approach is based on a three-tagénod.

Synchronization and concurrency management is alsg|| communications on both the client and the serside

included in these wrappers.

Secondly, “makefiles” and linker scripts are geteaao
enable automatic execution of the compilation psees.

As a result, one executable is obtained for eactmaong
space at the end of the generation process. Theitatde is
compiled for the target HW resource where it i®cdkted.

are implemented handling concurrent generation hia t
highest layer, communication stack managementsiecand
layer, and communication transfers in the lowegtila

Thus, the first layer is completely dependent om th
communication semantics, but independent of theures
allocation. The second layer generates all the uress

To achieve this, the generated wrappers contairetfé® required to handle data transfers depending on the
SW infrastructure required for each memory space t@jigcation, but mainly independently of the channel
operate and communicate with the other executables. semantics. Finally, the third layer contains thesiba

In this process, the generation of concurrencyesak communication mechanisms that are only dependerihen
advantage of the information on component commtioit8. pjatform architecture, but not on allocation or
described by channels, interfaces, data types @saource ommunication semantics.

allocations in the UML/MARTE model [6]. Among these basic communication functions, thet firs
possibility is that both components are in the sameenory
partition, the communication is direct. The second

possibility is that the communication is perfornmsetween

Finally, the interface types can also define thmasics

components in different memory spaces, but the mgmo of the services included in them, either sequengiadrded

spaces are allocated in the same OS. Thus, datassed
through OS calls, such as FIFOs. Finally, the allion of
the memory partitions can be in different operasggtems.

or concurrent [19]. Each interface can only haperations
with one of the previous semantics.
The combination of the interface semantic featuned

Then, a package transfer solution such as TCP/liBad. the channel semantic features enables the possilofi
modelling a wide set of different, communication
alternatives. In order to automatically integraie these
semantics in the final binary without modifying tlser-
provided, functional code, functions are redirectat
compilation time. This means that, when a componerts
there is one end which requires an interface anthanend to execute a service from another component, a it@mp
which provides the interface. macro makes it call an alternative function, indted the

Thus, the communication mechanism is defined in theervice itself. This new function generates a retjpacket
UML/MARTE model as the tuple composed of the ch&anneaccording to the information about interface servand
and its supported interfaces. Thus, the semanficsach writes it in the channel, generating the associated
channel can be easily changed by modifying the sdosaof concurrency. The channel manages the packet add gdn
the attributes of a channel and the types of ttexface. the provided application component. Then, the mpledi
e component receives it according to the informafiom the
IDterfacE MEMTETY request packet and executes it when possible. Ifsirtak

server component sends the response through thenetha

f K and the required component updates its executbon fl

5.CHANNEL IMPLEMENTATION
The model description is based on components wdrieh
connected by channels, providing services. Thepdces
are grouped in interfaces. Additionally, for eadtamnel,

+ T2_tctuFunctionality()

«clientServerSpecification»

b 5.1 DATA SPLITTING

dlabee e e In order to increase generated concurrency, datkeps
sent in a service request can be split into pamsbling
several concurrent requests to be called. This staeam
splitting is used to provoke the automatic callnaditiple
concurrent copies of the same function, which ingslthe
creation of multiple threads in the application paments.
associated with the function requests communictbexligh In the UML/MARTE methodology, interfaces are used
the channel (attributes blockingFunctionCalls, for enabling the splitting of data streams sinaeythan be
blockingFunctionReturn) and to consider the capacity of the typed. The idea is that, if the interface on thentlside has
channel to store service requests (attribuesMult). greater data sizes than on the server side, thenstt@ams
According to these channel attributes, the cligoliaation generated by the client are split considering ta& cizes
component can be blocked or not until the functisn accepted by the server. Thus, the UML/MARTE inteefa
attended, waiting for function returns, modifyiigtclient's enable the definition of the different data typegquired for
concurrent behaviour. On the server side, eachestqu specifying the parameters of the interface functiofhe
produces a new thread to enter in the componemeMer, UML Data Types are used to define specific dat@syps
the maximum number of threads in an applicationgrrays and structures.
component available to attend to requests can dafiga in The data stream splitting is captured in the mduel
the model (attribute srPoolSze). This application inheritance between interfaces. This modelling raaEm
component characteristic can model different irdern enables new interfaces to be defined that are ergkzation
concurrent structures of the application componenipf 3 previous one. These new interfaces (in Figiréhe
producing a significant impact on system perforneanc interfaces “Interface_ MEMC_TCTU_Exploration_2” and

Other features that can be specified for the cHareme® “|nterface. MEMC_TCTU_Exploration_4") differ from ¢h
the priority of the function request being dealthwby the previous interfaces (in Figure 3, the interfaces
server application of this channel (attribpteority) and the “|nterface. MEMC_TCTU") in one parameter. Speciflgal
maximum time for a function request to be completedhe difference among these interfaces is the sizheodata
(attribute timeout). The priority is used by the server type that specifies a parameter. In the case inréi@, a
scheduler to integrate and sort incoming requestsived parameter called “explor” that is typed by differerray
from different sources. When the server has anlabdei data types with different size.
thread in the pool, the scheduler launches theesicfuiom Additionally, the inherence of interfaces can beduor
the channel with highest priority. The timeout ised t0 joining concurrent independent flows. In order te b
awaken the thread suspended by the blocks desalime. executed, an application component should haveadlai

«clientServerSpecification»
«Interface»
Interface MEMC_TCTU_Exploration_2

+ T2_tctuFunctionality() + T2 _tctuFunctionality()

Figure 3: Interfacesinheritance

Specifically, it is possible to modify the typeshidbckade

data to be triggered. However, these data come fwmn
different, independent, concurrent flows. In ortespecify
that a parameter represents an element to be jothed
corresponding join parameters have to be specifiethe
generalized interfaces; only these parameters havee
specified in generalized interfaces. Then, thesarpeters
are not typed with data type. In this case the gmterator
knows that the parameter is for joining concurfiaws.

The combination of the previous
specification mechanism provides the designer withide
palette of modelling resources in order to spedifferent
concurrent structure alternatives in an easy asidiay.

For each component a file is generated. This fletains
the execution threads of the component and thetiinscto
manage the channel ends. On the one hand, if thpamwment
is a server, the component contains a functionanage the
incoming requests for each channel and anothechedsile

partitioned. Then requests are performed as destrib
previous sections. When the requests are complébed,
channel modifies the data of a parent one and ftees
memory of the partial requests. Secondly, if predidize is
greater, the channel waits for all the requestatiowe. When
they are all available, the channel generates enpaequest
with the information and merges the data. A threewice is
then executed to deal with the parent request amgn

concurrencycompleted, the channel updates the request panamete

child requests.

6.2 JOINING CONCURRENT FLOWS
After splitting data and performing concurrent salt is
usually necessary to merge these flows to contitnee
execution of the system. This mechanism enables the
synchronization between two concurrent flows ofcexien
when they require the same interface and thisfateruses

the services to carry out. On the other hand, & thparameters from these flows.

component is a client, the component has a functmon

manage the responses of the channel. These fusetierthe
functions triggered by the main function.

Finally, wrappers are automatically generated. &tae
two kinds of wrapper, either provided or requirete®s. On
the one hand, the required wrapper is a file wifarection
for each interface service function that encapeslahe
original call of the function and generates a retjg&ucture
with all the information about the required servifunction
identifier, parameters, etc.), and finally sends #tructure
information through the channel. On the other hahe,

provider wrapper file has a function which takes th paper to asses the proposed methodology.

The generated wrappers create request structutieshsi
parameters of the parent interface and the parasnefe
availability are set to null. Then the wrapper gates a
function to synchronize both flows until all paraers are
available. This synchronization is performed with
semaphores and all flows are blocked except onehaltias
access to the parent service interface: When tnécee
finishes, the other requests are awaken.

7 USE CASES
An MPEG-4 encoder implementation is used in this
It enables

information from the incoming request to execute th different system configurations to be established b

correspondent service.

6. COMMUNICATION LIBRARY INTERFACE

The communication library is the complement of e
code generator. The library is implemented in Cectab,
and it consists of a set of C files that implentéetfunctions
in order to perform the communications and the ganmeent
of the channels at both ends (required and proyidEadis
library facilitates its reusability and minimizésetamount of
generated code lines.

6.1 DATA PARTITION IMPLEMENTATION

As mentioned above, data partitioning is perfornbgd
the different parameter data sizes of the interfamided
and interface required.

The channel checks the size of the interface servic

parameters and this produces alternative situationsthe
one hand, we have the situation where the datacdfitiee
interface’s required service is equal to the sizthe data in
the provided interface service. This situation doext
produce extra operations. On the other hand, the of
interfaces services can be different. Firstly,hié trequired
service size is greater, the channel generatesogional
number of
information as the parent, only changing the databé

request structure children with the same

modifying the channel semantics of the model. THREG-4
encoder is an industry-standard, consisting of aiame
estimation and compensation (MEMC) phase followgd b
transformation (TCTU) and entropy coding (EC) plsase
Finally, the data is packed (BP) (Figure 4). Fromiritial
sequential implementation, channel semantics endide
definition of different parallel regions operatingth split
data. Automatically generated code controls
concurrency, data management and synchronizatopriresl
to interconnect all the components according taregt.

the

a) sequential b) pipeline c) sequential: bi d) pipeline: €) bi concurrent
concurrent tetraconcurrent block and tetra
Starting Starting Starting Starting Starting
* ,L =)
MEMC MEMC MEMC
—
v I e:
mlmial
TCTU TCTU et
T LU
EC EC EC
BP BP BP

Figure 4: Explored M PEG-4 Configurations

In case a), clients always wait for server completio
continue. In case b), buffered calls are used fement a
pipelined architecture. The cases c), d) and e) deta
partitioning. In case c), the interface definitienables the
execution to use two threads in order to computarae in

This methodology can be used to optimize the ressur
used in embedded systems, since it enables differen
concurrent architectures to be explored withoutuiriog
designer effort, due to the implemented code gé¢ioara
process.

MEMC and TCTU, blocking components until finishitige
frame encoding process. Case d) uses data partition
generating four threads with pipeline. Finally, €& uses [1]
data partition for two threads in MEMC and fourethds in [2]
TCTU without blocking. (3]
The results obtained from applying the differentl4]
configurations in the MPEG-4 encoder were evaluatede [
OMAP-4 (PandaBoard) HW platform.
CASE EXECUTION TIME

a) Sequential 21.05 seconds
b) Pipeline 15.70 seconds
c) Sequential bi concurrent 13.01 seconds
Pipelinetetra concurrent 11.11 seconds
Bi and tetra concurrent 12.89 seconds

(6]
(71

(8]

d)
€)

Table 1: MPEG4 Simulation on OM AP-4

In order to test the merging mechanism, a stergisco (9]

vision use case was applied. This system takesrages

that are initially rectified to enable their lamsmparison in [10]
order to extract the position of the different atgeof the
image with respect to the observer. Both imagesnitially — [11]
processing in parallel, so two image processingdlare
defined for that purpose, one for the right imagel a [12]
second one for the left image. Each image is poegssed, [13]

checking whether the image has enough quality. ;Then
classical two-frame stereo matching algorithm start

The Stereovision use case was executed in differefit4]
platforms: on OMAP-3 (BeagleBoard) using local
communications, on a TCP-IP system between OMAREB a ;-
OMAP-4 and on a SPEAr-600 (double-core architecture
with different Operating Systems) using TCP-IP.

PLATFORM EXECUTION TIME [16]
Beagle 315.960 seconds

Beagle-Panda 261.161 seconds 17

SPEAr-600 265.878 seconds (17]

Table 2: Stereovision Simulation [18]

9. CONCLUSIONS AND FUTURE WORK [19]

The paper presents a methodology that enables the
application of different concurrency architectures a
system described in UML/MARTE, modifying
communication between components. From the
UML/MARTE model, some code files are generated in
order to compile them with the functional code bkt
application. The whole C code is compiled with geted
“makefiles” and the final binary executables areated for
the target platform.

In this context, data splitting is used to increagstem
concurrency enabling service calls to be dividea iset of
smaller concurrent operations.

10. REFERENCES
OMG: "UML Profile for MARTE", www.omgmarte.org, 2@G1L

http://www.papyrusuml.org/
Website. www.acceleo.org. Nov., 2010.
OMG. MOF Model To Text Language. Jan., 2008.

D. C. Schmidt, “Model-driven Engineering” IEEE Couter, vol. 39
no. 2, pp. 25-31, 2006.

Ommited for Blind review

P. Samuel, R. Mall, P. Kanth: “Automatic Test C&sneration From
UML Communication Diagrams”. Information and Softea
Technology, February 2007.

F. Boutekkouk, Z. Tolba, M. Okab: “Automatic Intace Generation
between Incompatible Intellectual Properties(IPgpmf UML
Models”. Advances in Computing and Communications.
Commmunications in Computer and Information Scieh@dume
191, 2011, pp 40-47.

F. Mischkalla, D. He, W. Mueller: “Closing the ghptween UML-
based modeling, simulation and synthesis of conabiRV/SW
systems”. DATE, 2010.

T. Schattkowsky, J.H. Hausmann, G. Engels: “UsimMdL Activities
for system-on-chip design and synthesis”. MoODELS&0

W. Mueller, Y. Vanderperren: “UML and model drivelevelopment
for SoC design”. CODES+ISSS’06.

J. Dekeyser, P. Boulet, P. Marquet, S. Meftali: b driven
engineering for Soc co-design”. IEEE-NEWCAS, Jufé®

T.Cardoso, E. Barros, B.Prado, A. Aziz: “Communimatsoftware
synthesis from UML-ESL models”. Symposium on Inttgd
Circuits and System Design. SBCCI Brasilia 2012.

F. Herrera, P. Pefiil, E. Villar, F. Ferrero and VRalencia “An
Embedded System Modelling Methodology for Designacp
Exploration”. JCE 2012.

E. Ebeid, D. Quaglia, F. Fummi: “Generation of VH@ode from
UML/MARTE Sequence Diagrams for Verification andn8yesis”.
Digital System Design (DSD) 2012.

Y. Vanderperren, W. Mueller, and W. Dehaene, “UML électronic
systems design: a comprehensive overview,” Desigtoation for
Embedded Systems, vol. 12, no. 4, 2008.

J. Barba, F. Rincén, F. Moya, J.D. Dondo J.C. LO6peZA
comprehensive integration infrastructure for emileeddsystem
design”, Microprocessors and Microsystems, 2012.

S. Zhenxin, W. Weng-Fai. “A UML-based approach
heterogeneous IP integration”. ASP-DAC, 2009.

http://www.omg.org/spec/UML/2.4.1/

for

