
AUTOMATIC CONCURRENCY GENERATION THROUGH COMMUNICATION DATA
SPLITTING BASED ON UML/MARTE MODELS

ABSTRACT
With the increase in the number of processing elements
integrated in HW platforms, the development of new
solutions helping engineers to design concurrent
applications is gaining greater interest. Code refinements
required to parallelize sequential algorithms are usually
quite complex, and do not guarantee that the decisions
taken will provide the expected performance result,
requiring a costly and iterative design process. To solve this
problem, this paper presents a methodology that enables
designers to define and automatically create different
concurrent architectures for the system, only modifying
different parameters in the UML model. The main idea is to
automatically modify the communication between
components, adding to the typical configurable options of
performing synchronous, asynchronous or buffered calls the
idea of enabling parallelization by dividing one service call
into several concurrent calls, each one operating with part
of the data. Examples of use of this idea with video
applications are presented, demonstrating the performance
improvement obtained in the final system.

Index Terms— UML/MARTE, CONCURERNCY,
CODE SYNTHESYS

1. INTRODUCTION
The evolution of fabrication technologies is enabling the

development of increasingly powerful chips containing
multiple processors. These chips support different types of
architectures, from symmetric structures, to heterogeneous
implementations, including CPUs, DSPs or GPUs. As a
result, the development of concurrent applications capable
of taking advantage of all the computational power of these
chips is becoming a critical issue.

However, transforming sequential codes in concurrent
applications, while also satisfying the associated real-time
constraints is a very complex process. The reason is that this
process usually implies two different steps. First, it is
necessary to generate the refined concurrent code. After that,
designers have to evaluate whether the resulting solution is
really capable of obtaining maximum performance for the
multi-processor HW. Since adequate management of fork-
join solutions, ensuring correct synchronization, is a real
challenge on its own, the combination of both steps usually
leads to a very costly iterative process.

To deal with this issue, we propose taking advantage of
the latter ideas for designing at high abstraction levels. This
approach provides an effective way of managing different

results while maintaining the global perspective. Then, the
development of tools that automatically apply all the details
reflected in the high-level model in the final code generation
can help designers to face the challenge of overcoming
system concurrency.

One of the most common approaches applied for high-
level system modelling is the use of UML. However, UML
is usually too generic for its application to specific domains,
such as embedded systems. To get round this limitation the
OMG has proposed a standard called MARTE, oriented to
enabling designers to include all the information related to
embedded, real-time system designs in the UML models.
From this input, some tools are appearing, proposing
solutions to apply the information in the model to final
implementations through code synthesis. For example, it is
possible to define different characteristics in system
communications such as synchronism
(synchronous/asynchronous) and buffers (fifos) [6]. As a
result, designers can modify some channel semantics in the
model and automatically obtain wrapper codes that enable
direct evaluation of the modelled solution in the target
board.

In this way, the paper proposes a solution that goes
beyond that initial approach. The basic idea can be easily
shown with a simple example. When analyzing images, it is
usually possible to divide the image in parts, operate with
the different parts separately and then join all the results to
continue further processing. Following this idea, we propose
a solution where designers can automatically provide
information in the UML model. From this model, the
infrastructure developed automatically generates wrappers
capable of implementing different communication solutions,
such as dividing the information sent in a service call in
order to launch multiple copies of the service receiving part
of the data, and joining the results at the end. Additionally,
this approach can be chained when one service calls another
service and so on, the final system being a very complex
concurrent architecture.

This technique has the advantage that the concurrent
architecture is mainly integrated in the automatically
generated communication wrappers. As a result, it is mainly
hidden from the functional code directly developed by the
designer, greatly reducing designer effort.

For this purpose, the paper starts by presenting an
introduction to the state of the art in the area, and then it
introduces the global methodology; how to integrate all the
required information for data splitting into the UML model,
and, finally, how the tool automatically creates the wrappers

required in order to generate the resulting concurrency.
Finally, some results and conclusions are provided.

2. STATE OF THE ART
The development of tools that enable automatic

generation of communication and concurrency
infrastructures for component-based systems is a clear need
for SW designers who wish to reduce their effort in the
implementation of complex systems. To achieve this goal,
model-driven design methodologies are commonly adopted
to handle the design of large functionalities [5]. The latest
design methodologies start from high-level UML models
combined with algorithmic codes (e.g. C, C++, Matlab, etc.)
of the different system components [16].

In addition, from these UML models, synthesis tools can
extract the information necessary to explore different
configurations in the model. These configurations can
include changing the resource allocation, the application’s
concurrent behaviour, and the communication semantics.

In this context, UML is a very common way to handle the
design of embedded systems. [11] and [12] focuses on the
importance of model-driven architectures. [11] pays special
attention to the importance of UML models for industrial
applications and the effort that they require, and [12] is
focused on a particular aspect of MDE concerning model
transformations and code generation. The basic model-
driven architecture pattern requires the definition of a
platform-independent model (PIM) and its automated
mapping to one or more platform-specific models (PSMs).

Moreover, different semantic shortcomings have been
detected in UML, resulting in the generation of different
profiles for specific application scopes. At this point,
MARTE [1] represents the OMG standard profile for
Modelling and Analysis of Real-Time and Embedded
systems. Using it, [14] proposes a methodology for the
design of real-time embedded systems which supports UML
and the MARTE profile for system modelling.

From the point of view of automatic code synthesis from
UML models, [7] focuses on the automatic generation of
communication from UML communication models to
generate test cases, to run programs and to obtain the
execution traces and compare with the diagram activities.
There is a proposal of Interface Generation in [8], for
Incompatible Intellectual Properties. Its aim is to provide
System on Chip designers with a UML-based environment.
They model the IP as a UML component with a well-defined
interface. However, these approaches are oriented to
automatic generation of test cases and interfaces for
verification, and do not allow structure systems to be
designed at high-level.

In [9], an approach to bridge the gap between UML
modelling and SystemC-based verification and synthesis
environments is presented. In [10], another approach
enabling generation of complete synthesizable HDL code
from UML models is presented, while [15] presents a

methodology which starts from UML sequence diagrams
with MARTE timing constraints and generates VHDL
models with checkers. All of these are more focused on
diagrams of communication and sequence in order to
generate automatic code. In this paper the code is generated
from the model elements (i.e.: interfaces, channels,
components) captured in UML class diagrams and UML
composite structure diagrams.

Several UML-based methodologies also focus on
HW/SW communication synthesis. In [17], a semi-automatic
solution using Remote Method Invocation (RMI) semantics
for generating HW/SW infrastructure from UML models is
presented. In [18], a method for synthesizing interfaces for
integration of heterogeneous IP (Intellectual property) based
on UML models is proposed. The framework supports both
interface protocol customization and glue logic generation,
thereby maximizing IP integration. Reference [13] describes
a technique to synthesize multitasking support and
communication infrastructure from UML-ESL description
for virtual platform simulation.

Nevertheless, these approaches are limited when
designers need to optimize the concurrent architecture of the
system. Thus, the proposed approach enables the definition
of channel semantics (capacity, pool resources, blocking and
non blocking calls, restrictive access to interface functions)
to control the behaviour of the application through data
splitting, in addition to enabling automatic concurrency
generation.

3. AUTOMATIC CODE GENERATION
This paper presents an approach oriented to automatically

generating concurrency from UML/MARTE models. It
extends the paper presented in [6], where the initial ideas
were presented, providing complete solutions for
concurrency generation, such as the use of data splitting, and
providing more results.

The proposed approach starts from a platform-
independent model of the system. In this model, the
functionality is structured in components that provide and
require services (Figure 1), following a component-based
methodology. Additionally, in order to support the mapping
to non symmetric systems, to ensure correct access to shared
information and to enable communication optimization, the
system mapping is performed in two steps: first components
are mapped to memory spaces and then these memory
spaces are mapped to resources.

Considering a HW platform and a resource allocation, the
implemented framework automatically generates the
wrapper codes required to execute and interconnect the
different services, in order to obtain the implementation
binaries. As a result, it is possible to increase the
concurrency of the final system in order to optimize the use
of the target platform. In order to provide this additional
concurrency, the infrastructure takes advantage of the
information specified in the communication interfaces.

Figure 1: Proposed Synthesis Flow

The resulting communication infrastructure supports the
definition of synchronism (synchronous/asynchronous) and
buffers (fifos) to implement a pipelined architecture, but it
also provides a technique for splitting data transfers in order
to enable computing in parallel part of the transferred data-
streams (Figure 2). The user can combine all these
communication semantics in the UML model, and then the
infrastructure generates the final implementation also
considering the mapping of the components, using inter-
thread, inter-process or inter-node communication services
as required.

From this UML/MARTE model, an infrastructure
integrated in Eclipse generates all the elements necessary to
create the binary files required for simulation or execution in
the physical platform. The graphical tool used to create the
UML/MARTE model is Papyrus [2]. A code generator has
been developed as a set of generation templates written in
the standard MTL language [4]. The development has been
done through Acceleo [3], a code generation framework
fully integrated in Eclipse.

Two kinds of elements are directly generated from the
information included in the UML model. First, the C
wrappers are generated. These wrappers run the functional
code and communicate the interfaces of the components in
different memory spaces using the resources of the platform.
Synchronization and concurrency management is also
included in these wrappers.

Secondly, “makefiles” and linker scripts are generated to
enable automatic execution of the compilation processes.

As a result, one executable is obtained for each memory
space at the end of the generation process. The executable is
compiled for the target HW resource where it is allocated.
To achieve this, the generated wrappers contain the entire
SW infrastructure required for each memory space to
operate and communicate with the other executables.

In this process, the generation of concurrency, takes
advantage of the information on component communications
described by channels, interfaces, data types and resource
allocations in the UML/MARTE model [6].

4. CONCURRENCY GENERATION
Concurrency is generated automatically from the

application of the different communication architectures
described in Figure 2. From the single executable flow
produced by an initial, sequential code, the definition of
asynchronous calls and pipelines provokes the generation of
additional threads. An asynchronous call requires a new
thread, in order to enable the client to continue with its task
while the server executes the service. In a similar way,
buffered channels enable the implementation of pipelines,
where each component has its own execution thread, reading
and writing in channel fifos independently of the client
operation. At the same time, data splitting enables multiple
instances of the same service to be run in parallel, requiring
an additional thread per service.

Figure 2: Supported architectures: Sequential (1),
Asynchronous (2), Pipeline (3), Data splitting (4), Combined(5)

As long as channel semantics require concurrency
generation, resource allocation has the same effect. While
the execution of service calls provided by a component
running in the same process can be performed by the calling
thread, calls to services in other processes or other OSs
require a concurrent infrastructure to look for incoming
requests and launch the execution of the services needed.

The ad-hoc automatic generation of communication
wrapper codes considers all these possibilities in
combination, so it is an extremely difficult task. To deal with
it, the proposed approach is based on a three-layer method.
All communications on both the client and the server side
are implemented handling concurrent generation in the
highest layer, communication stack management in a second
layer, and communication transfers in the lowest layer.

Thus, the first layer is completely dependent on the
communication semantics, but independent of the resource
allocation. The second layer generates all the resources
required to handle data transfers depending on the
allocation, but mainly independently of the channel
semantics. Finally, the third layer contains the basic
communication mechanisms that are only dependent on the
platform architecture, but not on allocation or
communication semantics.

Among these basic communication functions, the first
possibility is that both components are in the same memory
partition, the communication is direct. The second

possibility is that the communication is performed between
components in different memory spaces, but the memory
spaces are allocated in the same OS. Thus, data is passed
through OS calls, such as FIFOs. Finally, the allocation of
the memory partitions can be in different operating systems.
Then, a package transfer solution such as TCP/IP is used.

5. CHANNEL IMPLEMENTATION

The model description is based on components which are
connected by channels, providing services. These services
are grouped in interfaces. Additionally, for each channel,
there is one end which requires an interface and another end
which provides the interface.

Thus, the communication mechanism is defined in the
UML/MARTE model as the tuple composed of the channel
and its supported interfaces. Thus, the semantics of each
channel can be easily changed by modifying the semantics of
the attributes of a channel and the types of the interface.

Figure 3: Interfaces inheritance

Specifically, it is possible to modify the types of blockade
associated with the function requests communicated through
the channel (attributes blockingFunctionCalls,
blockingFunctionReturn) and to consider the capacity of the
channel to store service requests (attribute resMult).
According to these channel attributes, the client application
component can be blocked or not until the function is
attended, waiting for function returns, modifying the client’s
concurrent behaviour. On the server side, each request
produces a new thread to enter in the component. However,
the maximum number of threads in an application
component available to attend to requests can be specified in
the model (attribute srPoolSize). This application
component characteristic can model different internal
concurrent structures of the application component,
producing a significant impact on system performance.

Other features that can be specified for the channels are
the priority of the function request being dealt with by the
server application of this channel (attribute priority) and the
maximum time for a function request to be completed
(attribute timeout). The priority is used by the server
scheduler to integrate and sort incoming requests received
from different sources. When the server has an available
thread in the pool, the scheduler launches the request from
the channel with highest priority. The timeout is used to
awaken the thread suspended by the blocks described above.

Finally, the interface types can also define the semantics
of the services included in them, either sequential, guarded
or concurrent [19]. Each interface can only have operations
with one of the previous semantics.

The combination of the interface semantic features and
the channel semantic features enables the possibility of
modelling a wide set of different, communication
alternatives. In order to automatically integrate all these
semantics in the final binary without modifying the user-
provided, functional code, functions are redirected at
compilation time. This means that, when a component needs
to execute a service from another component, a compiler
macro makes it call an alternative function, instead of the
service itself. This new function generates a request packet
according to the information about interface service and
writes it in the channel, generating the associated
concurrency. The channel manages the packet and sends it to
the provided application component. Then, the provided
component receives it according to the information from the
request packet and executes it when possible. Finally, the
server component sends the response through the channel
and the required component updates its execution flow.

5.1 DATA SPLITTING
In order to increase generated concurrency, data packets

sent in a service request can be split into parts, enabling
several concurrent requests to be called. This data stream
splitting is used to provoke the automatic call of multiple
concurrent copies of the same function, which involves the
creation of multiple threads in the application components.

In the UML/MARTE methodology, interfaces are used
for enabling the splitting of data streams since they can be
typed. The idea is that, if the interface on the client side has
greater data sizes than on the server side, then data streams
generated by the client are split considering the data sizes
accepted by the server. Thus, the UML/MARTE interfaces
enable the definition of the different data types required for
specifying the parameters of the interface functions. The
UML Data Types are used to define specific data types as
arrays and structures.

The data stream splitting is captured in the model by
inheritance between interfaces. This modelling mechanism
enables new interfaces to be defined that are a generalization
of a previous one. These new interfaces (in Figure 3, the
interfaces “Interface_MEMC_TCTU_Exploration_2” and
“Interface_MEMC_TCTU_Exploration_4”) differ from the
previous interfaces (in Figure 3, the interfaces
“Interface_MEMC_TCTU”) in one parameter. Specifically,
the difference among these interfaces is the size of the data
type that specifies a parameter. In the case in Figure 3, a
parameter called “explor” that is typed by different array
data types with different size.

Additionally, the inherence of interfaces can be used for
joining concurrent independent flows. In order to be
executed, an application component should have available

data to be triggered. However, these data come from two
different, independent, concurrent flows. In order to specify
that a parameter represents an element to be joined, the
corresponding join parameters have to be specified in the
generalized interfaces; only these parameters have to be
specified in generalized interfaces. Then, these parameters
are not typed with data type. In this case the code generator
knows that the parameter is for joining concurrent flows.

The combination of the previous concurrency
specification mechanism provides the designer with a wide
palette of modelling resources in order to specify different
concurrent structure alternatives in an easy and fast way.

For each component a file is generated. This file contains
the execution threads of the component and the functions to
manage the channel ends. On the one hand, if the component
is a server, the component contains a function to manage the
incoming requests for each channel and another to schedule
the services to carry out. On the other hand, if the
component is a client, the component has a function to
manage the responses of the channel. These functions are the
functions triggered by the main function.

Finally, wrappers are automatically generated. There are
two kinds of wrapper, either provided or required ones. On
the one hand, the required wrapper is a file with a function
for each interface service function that encapsulates the
original call of the function and generates a request structure
with all the information about the required service (function
identifier, parameters, etc.), and finally sends the structure
information through the channel. On the other hand, the
provider wrapper file has a function which takes the
information from the incoming request to execute the
correspondent service.

6. COMMUNICATION LIBRARY INTERFACE
The communication library is the complement of the C

code generator. The library is implemented in C code too,
and it consists of a set of C files that implement the functions
in order to perform the communications and the management
of the channels at both ends (required and provided). This
library facilitates its reusability and minimizes the amount of
generated code lines.

6.1 DATA PARTITION IMPLEMENTATION
As mentioned above, data partitioning is performed by

the different parameter data sizes of the interface provided
and interface required.

The channel checks the size of the interface service
parameters and this produces alternative situations. On the
one hand, we have the situation where the data size of the
interface’s required service is equal to the size of the data in
the provided interface service. This situation does not
produce extra operations. On the other hand, the size of
interfaces services can be different. Firstly, if the required
service size is greater, the channel generates a proportional
number of request structure children with the same
information as the parent, only changing the data to be

partitioned. Then requests are performed as described in
previous sections. When the requests are completed, the
channel modifies the data of a parent one and frees the
memory of the partial requests. Secondly, if provided size is
greater, the channel waits for all the requests to arrive. When
they are all available, the channel generates a parent request
with the information and merges the data. A thread service is
then executed to deal with the parent request and, when
completed, the channel updates the request parameters of
child requests.

6.2 JOINING CONCURRENT FLOWS

After splitting data and performing concurrent calls, it is
usually necessary to merge these flows to continue the
execution of the system. This mechanism enables the
synchronization between two concurrent flows of execution
when they require the same interface and this interface uses
parameters from these flows.

The generated wrappers create request structures with the
parameters of the parent interface and the parameters of
availability are set to null. Then the wrapper generates a
function to synchronize both flows until all parameters are
available. This synchronization is performed with
semaphores and all flows are blocked except one which has
access to the parent service interface: When the service
finishes, the other requests are awaken.

7 USE CASES
An MPEG-4 encoder implementation is used in this

paper to asses the proposed methodology. It enables
different system configurations to be established by
modifying the channel semantics of the model. The MPEG-4
encoder is an industry-standard, consisting of a motion-
estimation and compensation (MEMC) phase followed by
transformation (TCTU) and entropy coding (EC) phases.
Finally, the data is packed (BP) (Figure 4). From an initial
sequential implementation, channel semantics enable the
definition of different parallel regions operating with split
data. Automatically generated code controls the
concurrency, data management and synchronization required
to interconnect all the components according to Figure 4.

Figure 4: Explored MPEG-4 Configurations

Starting Starting

MEMC

TCTU

EC

BP

MEMC

TCTU

EC

BP

c) sequential: bi
concurrent

a) sequential e) bi concurrent
block and tetra

Starting

EC

BP

MEMC

 TCTU

b) pipeline

Starting

BP

EC

MEMC

 TCTU

Starting

BP

EC

MEMC

 TCTU

d) pipeline:
tetra concurrent

In case a), clients always wait for server completion to
continue. In case b), buffered calls are used to implement a
pipelined architecture. The cases c), d) and e) use data
partitioning. In case c), the interface definition enables the
execution to use two threads in order to compute a frame in
MEMC and TCTU, blocking components until finishing the
frame encoding process. Case d) uses data partition,
generating four threads with pipeline. Finally, case e) uses
data partition for two threads in MEMC and four threads in
TCTU without blocking.

The results obtained from applying the different
configurations in the MPEG-4 encoder were evaluated in the
OMAP-4 (PandaBoard) HW platform.
CASE EXECUTION TIME

a) Sequential 21.05 seconds
b) Pipeline 15.70 seconds
c) Sequential bi concurrent 13.01 seconds
d) Pipeline tetra concurrent 11.11 seconds
e) Bi and tetra concurrent 12.89 seconds

Table 1: MPEG4 Simulation on OMAP-4

In order to test the merging mechanism, a stereoscopic
vision use case was applied. This system takes two images
that are initially rectified to enable their later comparison in
order to extract the position of the different objects of the
image with respect to the observer. Both images are initially
processing in parallel, so two image processing flows are
defined for that purpose, one for the right image and a
second one for the left image. Each image is pre-processed,
checking whether the image has enough quality. Then, a
classical two-frame stereo matching algorithm starts.

The Stereovision use case was executed in different
platforms: on OMAP-3 (BeagleBoard) using local
communications, on a TCP-IP system between OMAP-3 and
OMAP-4 and on a SPEAr-600 (double-core architecture
with different Operating Systems) using TCP-IP.
PLATFORM EXECUTION TIME

Beagle 315.960 seconds
Beagle-Panda 261.161 seconds
SPEAr-600 265.878 seconds

Table 2: Stereovision Simulation

9. CONCLUSIONS AND FUTURE WORK
The paper presents a methodology that enables the

application of different concurrency architectures in a
system described in UML/MARTE, modifying
communication between components. From the
UML/MARTE model, some code files are generated in
order to compile them with the functional code of the
application. The whole C code is compiled with generated
“makefiles” and the final binary executables are created for
the target platform.

In this context, data splitting is used to increase system
concurrency enabling service calls to be divided in a set of
smaller concurrent operations.

This methodology can be used to optimize the resources
used in embedded systems, since it enables different
concurrent architectures to be explored without requiring
designer effort, due to the implemented code generation
process.

10. REFERENCES
[1] OMG: "UML Profile for MARTE", www.omgmarte.org, 2013.

[2] http://www.papyrusuml.org/

[3] Website. www.acceleo.org. Nov., 2010.

[4] OMG. MOF Model To Text Language. Jan., 2008.

[5] D. C. Schmidt, “Model-driven Engineering” IEEE Computer, vol. 39
no. 2, pp. 25-31, 2006.

[6] Ommited for Blind review

[7] P. Samuel, R. Mall, P. Kanth: “Automatic Test Case Generation From
UML Communication Diagrams”. Information and Software
Technology, February 2007.

[8] F. Boutekkouk, Z. Tolba, M. Okab: “Automatic Interface Generation
between Incompatible Intellectual Properties(IPs) from UML
Models”. Advances in Computing and Communications.
Commmunications in Computer and Information Science Volume
191, 2011, pp 40-47.

[9] F. Mischkalla, D. He, W. Mueller: “Closing the gap between UML-
based modeling, simulation and synthesis of combined HW/SW
systems”. DATE, 2010.

[10] T. Schattkowsky, J.H. Hausmann, G. Engels: “Using UML activities
for system-on-chip design and synthesis”. MoDELS 2006.

[11] W. Mueller, Y. Vanderperren: “UML and model driven development
for SoC design”. CODES+ISSS’06.

[12] J. Dekeyser, P. Boulet, P. Marquet, S. Meftali: “Model driven
engineering for Soc co-design”. IEEE-NEWCAS, June 2005.

[13] T.Cardoso, E. Barros, B.Prado, A. Aziz: “Communication software
synthesis from UML-ESL models”. Symposium on Integrated
Circuits and System Design. SBCCI Brasilia 2012.

[14] F. Herrera, P. Peñil, E. Villar, F. Ferrero and R. Valencia “An
Embedded System Modelling Methodology for Design Space
Exploration”. JCE 2012.

[15] E. Ebeid, D. Quaglia, F. Fummi: “Generation of VHDL Code from
UML/MARTE Sequence Diagrams for Verification and Synthesis”.
Digital System Design (DSD) 2012.

[16] Y. Vanderperren, W. Mueller, and W. Dehaene, “UML for electronic
systems design: a comprehensive overview,” Design Automation for
Embedded Systems, vol. 12, no. 4, 2008.

[17] J. Barba, F. Rincón, F. Moya, J.D. Dondo J.C. López. “A
comprehensive integration infrastructure for embedded system
design”, Microprocessors and Microsystems, 2012.

[18] S. Zhenxin, W. Weng-Fai. “A UML-based approach for
heterogeneous IP integration”. ASP-DAC, 2009.

[19] http://www.omg.org/spec/UML/2.4.1/

