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ABSTRACT 

 

The proposed approach presents a solution for automatically 
synthesizing the SW code of complex embedded systems 
from a model driven system specification. The solution is 
oriented to enable easy exploration and design of different 
allocation of SW components in heterogeneous platform, 
minimizing designer effort. The system is initially described 
following the UML/MARTE standard. Applying this 
standard, the system is modeled, describing its components, 
interfaces and communication links, the system memory 
spaces, the resource allocations and the HW architecture. 
From that information, a SW infrastructure containing the 
communication infrastructure is generated ad-hoc for the 
system depending on the HW architecture and the resource 
allocations evaluated. As a result, the infrastructure 
synthesized is more specific and simple than previous 
approaches using solutions such as CORBA or RMI. The 
consequent communication overhead reduction can result in 
an important advantage for system performance 
optimization. 
 

Index Terms— System on Chip One, Software 
Synthesis, Design Space Exploration 
 

1. INTRODUCTION 

 
The evolution of fabrication technologies has enabled the 
development of powerful System on Chips containing 
multiple heterogeneous processors of different types, 
including CPUs, DSPs or GPUs. As a result, these systems 
can support large and complex functionalities. In order to 
handle this complexity design flows are evolving to start 
working at higher levels of abstraction. Designing at higher 
levels of abstraction is an effective way deal with large 
system complexities, selecting optimal configurations and 
verifying system constraints early in the design process. To 
do so, two main issues have to be solved. First, it is required 
to provide methodologies where designers can easily 
describe the system functionality, considering all the 
interactions among its functional components. Then, 
solutions capable of optimizing the implementation of this 
functional description are needed.  
Model driven design methodologies are being commonly 
adopted to handle the design of large functionalities. Latest 

design methodologies start from high-level UML models 
combined with algorithmic codes (e.g. C, C++, Matlab, etc.) 
of the different system components [1]. In these models, the 
user defines the system functionality using a platform-
independent model (PIM). Then, given a platform definition 
model (PDM), the PIM is translated to one or more 
platform-specific models (PSMs), where resource 
allocations are specified. 
In order to achieve an optimal solution for the final system, 
the most promising platform-specific model has to be 
selected before the implementation process starts. Design 
space exploration (DSE) solutions have been proposed to 
perform this selection process. However, there is still much 
work required to develop solutions capable of minimizing 
the effort required to provide the accurate estimation metrics 
the DSE tools require to evaluate the quality of the different 
possibilities. To accurately classify a solution, design space 
exploration demands not only modeling and simulation 
techniques at the system level, but also a link to initial 
implementations. Lower level tools such as ISSs or 
virtualization tools are required to estimate design 
parameters like power, performance and cost. Furthermore, 
the translation to low level implementations is required for a 
rapid prototype generation. 
However, the connection between high level modeling 
languages, such as UML, and the initial implementations 
required for performance evaluation currently implies large 
synthesis processes; processes that cannot be performed 
manually if designers want to enhance the productivity of the 
design cycle.  
In order to enable the evaluation of various design 
implementation options, automatic synthesis of the system 
starting from the UML models is required. The proposed 
approach performs the synthesis of the different possible 
implementations to be explored combining the information 
provided in the PIM, PDM and PSM models. System 
components, interfaces and functional communication links 
are described in the PIM. Physical communication links are 
described in the PDM model. Architectural mappings among 
PIM components and PDM resources lead to PSM models. 
In order to enable automatic synthesis of different solutions, 
the components are associated in the PIM model to different 
memory spaces. That way, it is possible to automatically 
allocate the functional codes to different resources since 
global variables and shared memory areas can only be used 



by components in the same memory spaces. To do so, each 
entire memory space is allocated in a single HW resource.  
From these models, the proposed approach generates the 
SW infrastructure required to interconnect the different 
memory spaces in the different platform resources using 
basic communication libraries developed for each physical 
communication channel in the HW platform. 
The use of the information described in the UML model, 
enables the automatic generation of ad-hoc communications 
infrastructures supporting interconnection of the different 
system component. The synthesis of ad-hoc communication 
infrastructures produce more specific and simple results than 
previous approaches using solutions such as CORBA or 
Remote Method Invocation (RMI) [11], which reliy in more 
complex solutions, capable of being reused in a wide range 
of use cases. The use of simpler infrastructures provokes a 
reduction of communication overloads, which can give 
benefits when optimizing embedded system performance. 
Additionally, it avoids the effort of manually generating and 
filling the skeletons required to apply these generic 
communication infrastructures. 
In order to present this approach, the paper is divided as 
follows. First, the state of the art is described. Second, the 
complete flow is presented. In section 4, the UML/MARTE 
methodology is shown. In section 5, the synthesis process is 
described. Then, an example is described in section 6. 
Finally, results, conclusions and future work are presented.  
 

2. STATE OF THE ART 

 
Automatic synthesis of code from high level models has 
obtained an important interest in last decade. For example, 
several works focused on synthesis for embedded SoCs 
design from SystemC approaches have appeared. In [11] a 
generic framework for HW/SW communication of 
functional tasks with shared resources, called Shared 
Objects is presented. Communication is implemented using 
a method-based interface realizing a RMI protocol. In order 
to analyze timing requirements of the HW/SW blocks 
separation and the bindings established among these 
HW/SW blocks, the authors propose a transparent 
communication mechanism and synthesis support for 
communication across the HW/SW boundary. In [12], a 
method for systematic embedded software generation is 
presented. There, the SW code (processes and process 
communication, including HW/SW interfaces) is 
systematically generated, from SystemC threads. 
However, other non specific high-level modeling solutions, 
such as UML, have also been applied in that context. The 
application scope of UML [3] has evolved from object-
oriented software systems modeling to cover different design 
domains. In this context, research to apply UML to the 
design of embedded systems has gained increasing interest, 
[1] [2], both in the application of the models in the design 
flows and in the evolution of the UML language itself [4].  

Most of the efforts spent on the integration of UML within 
embedded design processes, have focused on synthesis. 
Several researches on synthesis based on UML models are 
characterized by the creation of state machine models or 
variations of them [13]. In [5], a formal design for 
reconfigurable, modular digital controller logic synthesis is 
presented. By means of UML state machines concurrent 
super-states are modeled, enabling the direct, automatic 
mapping on structured array of cells in FPGAs. 
Nevertheless, not only state machine modes have been used 
for synthesis. In [6], a set of transformation rules for 
synthesis of code from UML activity diagrams are 
presented. UML Sequence diagrams are used to define 
control flow patterns, and then, they are transformed in 
Activity diagrams according to a different set of 
transformations rules. 
Other relevant research area focuses on the development of 
HW/SW communications within UML-based 
methodologies. In [7] a semi-automatic solution for 
generation of HW/SW infrastructure from UML models is 
presented.  This solution implements high-level 
programming interface (software drivers and hardware 
adapters) using Remote Method Invocation (RMI) semantics 
as the framework to unify the communication interfaces for 
all HW and SW components. The automatic generation is 
dealt with by means of a template-based mechanism.  
In [8], a method is proposed for synthesizing interfaces for 
heterogeneous IP integration from UML models. The 
framework supports both interface protocol customization 
and glue logic generation, thereby maximizing IP 
integration. Additionally, the framework enables the 
generation of the communication links among the system 
blocks from UML profiles used to model the system level 
communication interfaces.   
However, UML, as a completely generic language, usually 
lacks of all the semantics required to adequately model all 
the characteristics of embedded systems. In order to confront 
the challenge to cover the complete design flow of real-time 
embedded systems, the MARTE profile was created [4]. 
Taking MARTE-based models as input, several synthesis 
approaches have also been proposed. Gaspard2 [10] is a 
design environment for data-intensive applications which 
enables MARTE description of both, the application and the 
hardware platform, including MPSoC and regular structures. 
Through model transformations, Gaspard2 is able to 
generate an executable TLM SystemC platform at the timed 
programmers view (PVT) level.  
In [9] the complete design flow to move from high level 
MARTE models to code generation, for implementation of 
dynamically reconfigurable SoCs is presented. In this paper, 
generic control semantics for the specification of adaptative 
and dynamic reconfigurable SoCs is presented. In [14] a 
design flow based on high level languages (SysMl, MARTE, 
SystemC…) enables the generation of the deterministic 
multi-threaded code for parallel implementations.   



Nevertheless, all the previous solutions are oriented to 
generation of previously fixed models, leaving architectural 
decisions to rely on designers experience. However, with the 
improvement of evaluation tools such as virtualization 
(Qemu [15], OVP [16]) and DSE solutions [17], approaches 
oriented to support configurability, and especially different 
resource allocations are required. As a result, this paper 
focused on that area. 
 

3. PROPOSED FLOW 

 

The goal of the proposed flow is to enable selecting the most 
adequate allocation for the system under development with 
minimal design effort. Thus, it is required to provide a way 
to describe the system under design, and then, a solution 
capable of generating the inputs required by the simulation 
tool selected by the designer to estimate the performance 
metrics of the different alternatives. ISSs and Virtualization 
tools such as QEMU are usually selected for that task. In 
both cases, the inputs required are mainly the executable 
binary files that should run on the processing resources of 
the target platform. Additionally, rapid prototyping solutions 
can be also applied to evaluate the different design 
possibilities. In that case, similar binary files are also 
required. Finally, the resulting files for the selected 
allocation can be directly used in the final design or can be 
refined by the designer. Thus, the main challenge of this 
paper is to solve the automatic generation of these binary 
files though a synthesis process. 

 

 
Fig. 1 Proposed Synthesis Flow. 

The proposed design flow (figure 1) starts from the 
UML/MARTE model of the system. This model is provided 
by the designer. The model is composed of three main 
elements. The first one is the platform independent model 
(PIM) which describes the functional components, (their 
interfaces and the functional code) and the interconnections 
among them. Secondly, a platform description model (PDM) 
describing the HW platform composed of the available 
processing elements and their interconnection. And finally, 
the UML/MARTE model contains the architectural 

mappings to be evaluated, which are specified in the 
platform specific model (PSM) [8]. Additionally, the user 
must provide the functional C codes for all the system 
components of the PIM. 
From this information, an infrastructure developed in 
Eclipse generates all the elements required to create the 
binary files required for simulation or physical execution. 
The elements generated can be grouped in three sets. First, 
the infrastructure generates the wrappers that communicate 
the interfaces of the components in different memory spaces 
using the resources of the platform. Secondly, makefiles are 
generated in order to enable automatic execution of the 
compilation processes. Finally, linker scripts are generated 
when needed, from the information of the PDM. 
These elements are used by the compiler together with the 
functional C code provided by the user and a communication 
library already developed as part of the proposed flow. This 
library contains the basic solutions for communicating 
components depending on their allocations: different 
processes in the same OS, processes in different nodes 
communicated by TCP/IP connections, etc.  
 

4. UML/MARTE MODELING 

 
The system under design is specified by an UML/MARTE 
model before starting the flow. The graphical orientation of 
UML helps designers to handle large systems in an easy 
way. However, the UML/MARTE model has to contain all 
the relevant, essential information of the system, in order to 
enable performing the synthesis process. Thus, it is required 
to define a UML/MARTE methodology combining the 
benefits of a visual language with large amounts of 
information. 
To solve that point, the information contained in a 
UML/MARTE model is separated in specific concerns, 
depending on their application area. Each concern is 
captured in a model view, which is represented using the 
UML diagrams that most fit the concern. Additionally, the 
views of the system model are grouped forming three 
different viewpoints: the Platform Independent Model, PIM), 
the Platform Description Model, (PDM), and Platform 
Specific Model (PSM). The PIM describes the system 
functionality (e.g. application, functional code, interfaces). 
The PDM describes the different HW and SW resources that 
form part of the system platform. Finally, the PSM describes 
the system architecture and the allocation of the application 
components into the platform resources. 
PDM and PSM models can be solved using a single view for 
each one, since the information supported is not too wide: a 
view describing the HW components of the platform and 
their interconnections for the PDM and a view where 
memory spaces are mapped to HW resources for the PSM. 
However, the description of the functionality requires much 
more detail, making the PIM to rely on the use of four views: 



Functional view, Concurrency view, Communication view 
and Memory-Allocation view. As a result the designer 
obtains a complete system model that can be easily handled 
to support the system design. 
First, the internals of the functional components of the 
systems are described using an UML package that is 
specified by the stereotype <<FunctionalView>>. 
FunctionalView includes both the specification of the 
functionality and the interfaces provided and required by 
each application components. Each application component 
has associated a set of C code files that define the 
component functionality. These files are modelled as UML 
artefacts using the UML standard stereotype <<file>>. 
In a second step, internal concurrency of the system 
application components is modelled using the stereotype 
<<ConcurrencyView>>.  The application components are 
modelled by the MARTE stereotype <<RtUnit>> included 
in the MARTE subprofile High-Level application modeling 
(HLAM). Each RtUnit component has their own execution 
thread, providing/requiring services to/from others 
application components by means of provided and required 
interfaces.  The association among files and RtUnits is 
defined by means of a UML abstraction, specified by the 
MARTE stereotype <<allocated>>, included in the MARTE 
subprofile Allocation Modeling (Alloc). An example of view 
describing these relationships can be shown in Figure 2. 

 
 Figure 2. <<RtUnit>> components and their associated <<file>> 

 Additionally, the ConcurrencyView includes the application 
structure, defined by instances of the application 
components and the way there are interconnected. The 
application components are interconnected by means of 
UML connectors that represent communicating channels. 
Communications are established through UML ports, where 
the provided/required interfaces of each application 
component are defined.   
The UML connectors are specified by means of the UML 
components defined in another model view, the 
<<CommunicationView>>, which is also part of the PIM.  
The CommunicationView includes the elements that define 
the semantics of the channels used to interconnect the 
application components. The MARTE stereotype used to 
specify these communicating components is the 
<<CommunicationMedia>>, included in the MARTE 
subprofile Generic Resource Modeling (GRM). The 
modeling of the set of specific communication semantics 

that a CommunicationMedia can capture is out of the scope 
of this paper.   
Finally, the allocation of the application components into 
memory spaces is dealt with in a system view identified by 
the stereotype <<MemoryAllocView>>. The 
MemoryAllocView package contains the components that 
identify the different memory spaces that are used for the 
allocation process of the application components.  These 
memory spaces are modeled by the MARTE stereotype 
<<MemoryPartition>>, which is included in the MARTE 
subprofile Software Resource Modeling (SRM).  
After modelling the MemoryPartition components, the 
application components have to be allocated into these 
memory partitions. The mapping of the application 
components into memory partitions is dealt with in a UML 
composite structure diagram included in the 
MemoryAllocView package.  In this diagram, the application 
instances defined in the ConcurrencyView are mapped into 
instances of MemoryPartions components. The application 
component instances are mapped to memory partition 
instances by means of UML abstractions specified by the 
MARTE stereotype <<allocate>> (Figure 3).   

 
Figure 3. Mapping SW components to HW resources 

5. AUTOMATIC BINARY GENERATION 

 
From the UML model and original C code that implement 
the application functionality, the generator produce a set of 
files that includes C wrappers that enables the 
communication among the application components and the 
compilation scripts. The interface wrappers use the facilities 
provided by a communication library to implement the final 
communication mechanisms. 
 
5.1. Interface wrappers 

 
The code generator takes the UML model to extract the 
necessary information for application components and its 
communications. 
This information must be reflected on the model and 
contained in the corresponding system views: 

• the ConcurrencyView where the application 
components are defined, and the way they are 
interconnected; the required/provided interfaces 
and the channels  



• the CommunicationView where the communicating 
components are defined 

• the PDM view, where the physical communication 
mechanisms are displayed 

• the PSM, where the resource allocations are 
described 

 All this information is used by the code generator to write 
the communication wrapper codes depending on the 
allocation of each component involved in each 
communication, details about the arguments that have to be 
transferred on each communication (data type, size, and 
direction: in, out or inout), and the physical resources the 
HW platform provides to communicate the processors.  
 
5.2. Communication libraries 

 
A library for communication between the application 
components was implemented. This library is based on the 
client-server paradigm. 
On the client side when an application requires a service 
from other application, the client application generates a 
new thread for the request. Firstly, this thread generates, for 
each parameter of the service, a parameter structure with 
the information about the parameter: an unique identifier in 
the call, the size of the data parameter in bytes, the type (e.g. 
return, in, inout), a flag indicating if the parameter is pointer 
or not, and the pointer indicating where the data is in the 
process local memory. Then, the thread generates a request 
structure with the information of the request with the type 
(blocking or not blocking), the identifier of the function 
required, the number of parameters, and finally links into 
this request structure all parameter structure created before. 
The request structure is used by the interface 
communication to store data in the channel and to modify 
local data when the request is completed. Finally, if the 
request is non-blocking, the thread finishes, doing the 
opposite in the blocking case. Once the response is 
available, the thread modifies locally the original data for 
the new one and finishes. 
On the other side, the server has an active part, which is in 
charge of constantly listening to each incoming 
communication channels waiting for the requests. When one 
request through a communication channel is received, the 
server registers the data and generates a new thread to attend 
it, and continues listening to the communication channel. So 
then, once the petition is completed, the server stores the 
new data in the communication channel. 
 
5.3. Execution flow structure 

 
As a result of the previous elements, several execution flows 
can be found in the resulting code. In addition to all 
execution flows required by the functional components to 
execute their functionality, each server application has one 
thread attending each channel which it is connected.  

Moreover, to attend each request a new thread will be 
generated, finishing when request is completed.  
On the other hand, the client application has its own 
execution flow and generates a new thread when it needs 
require a service from other different application 
component. The request could be blocking or not, so it is 
necessary to allow that the application flow can wait the 
response or not and continue. 
 

6.MULTI-PROCESS EXAMPLE 

 
An application example has been developed to check the 
abilities of the proposed approach for exploration activities. 
The application consists on four application components. 
Two components acts like servers providing specific 
functionality through provided interfaces. In addition, the 
other two components acts like clients requiring, at some 
time, the functionalities that are provided by the servers; 
both servers are connected with both clients. Each client 
obtains a set of two matrixes of points from grey images and 
accesses the servers to manipulate them. More precisely, the 
clients use the first server to get the inverse image of the first 
matrix and then access to the other server to add this inverse 
image with the other image. 

 
Figure 4. Architecture of the proposed example 

Figure 4 shows the UML model that captures the 
architecture of the application with the four application 
components, the two server applications and the two client 
applications (server_1, server_2 and client_1, client_2, 
respectively). The application components are 
interconnected by means of UML connectors that represent 
communicating channels (ch_s1_c1, ch_s1_c2, ch_s2_c1 
and ch_s2_c2). The communication is established through 
UML ports, where the provided/required interfaces of each 
application component are defined.   
In the code synthesized from the UML model, a main 
program file is generated by each application. The main files 
contain the necessary code infrastructure for the 
implementation of the communication among the application 
components. Specifically for the server case, the files add an 
active element that is listening to the channel of 
communication. Additionally, for each system interface 



included in the FuntionalView a file is generated in order to 
enable the calls to the functions provided by these interfaces.  
Finally, once the code files are generated, a makefile is 
generated to compile and link the whole application 
components with the communication interface to generate 
the target executable files.   
The proposed infrastructure has been applied to explore two 
different implementations of the communications among 
clients and services: using fifos from the operating system or 
using TCP/IP sockets. The execution of the application 
components has been run on two different HW platforms. 
The first one was a common laptop (Intel Core 2 Duo 
@2.00GHz) and the second one was on a Panda Board 
(OMAP4430 Cortex-A9 @1.0GHz). The execution worked 
with 1920x1080 matrixes of integer values. From these 
simulations, the results of table 1 have been extracted. 
 

Board Laptop 
App. TIME 

Fifo Socket Fifo Socket 

REAL 2.127  2.835 0.338 0.829 
USER 0.750  0.797 0.124 0.128 

Client 
1 

SYS 0.508  0.570 0.100 0.136 
REAL 2.201  2.990 0.356 0.732 
USER 0.852  0.781 0.136 0.132 

Client 
2 

SYS 0.445  0.852 0.080  0.092 
Table 1. Execution times of the proposed example 

The proposed approach has enable performing the 
comparison without manual porting effort. As a result, it can 
be stated that fifo communications are faster than sockets, 
which can lead to an optimal implementation. 
 

7. CONCLUSIONS AND FUTURE WORK 

 

The proposed approach presents a solution for automatically 
synthesizing the SW code of complex embedded systems 
from a UML/MARTE models. The automatic synthesis 
process enables easy exploration of different allocation of 
SW components, since simulators such as ISSs, 
virtualization tools and rapid prototyping solutions can be 
performed with minimal designer effort.  
The system is initially described following the 
UML/MARTE standard. The resulting model contains all 
information from functionality, HW platform and allocation 
required to perform the automatic synthesis. To do so while 
maintaining the enough simplicity in the visual diagrams, the 
information is displayed in several views.  
From this model, a generator synthesize the communication 
wrappers completely ad-hoc for the application, reducing the 
overhead obtained with more generic solutions. 
The approach enables easy exploration by focusing the 
system model on the definition of memory spaces. By 
identifying the memory spaces of the components, their 

interfaces and allocation, it is possible to generate binary 
files for different allocations from the same inputs.  
Additionally, the generated wrappers can implement 
different communications using basic communication 
facilities. Communication facilities to connect memory 
spaces in the same OS and memory spaces in Oss connected 
through TCP-IP protocol have been implemented. 
Additional communication types, such as CPU-DSP 
communication will be solved in future works. Moreover, 
deep analysis on the effect of the proposed communication 
infrastructures in system performance, and their comparison 
with other infrastructures such as CORBA or RMI are still 
pending. 
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