
AUTOMATIC SYNTHESIS OF EMBEDDED SW FROM UML/MARTE MODELS

SUPPORTING MEMORY SPACE SEPARATION

…

ABSTRACT

The proposed approach presents a solution for automatically
synthesizing the SW code of complex embedded systems
from a model driven system specification. The solution is
oriented to enable easy exploration and design of different
allocation of SW components in heterogeneous platform,
minimizing designer effort. The system is initially described
following the UML/MARTE standard. Applying this
standard, the system is modeled, describing its components,
interfaces and communication links, the system memory
spaces, the resource allocations and the HW architecture.
From that information, a SW infrastructure containing the
communication infrastructure is generated ad-hoc for the
system depending on the HW architecture and the resource
allocations evaluated. As a result, the infrastructure
synthesized is more specific and simple than previous
approaches using solutions such as CORBA or RMI. The
consequent communication overhead reduction can result in
an important advantage for system performance
optimization.

Index Terms— System on Chip One, Software
Synthesis, Design Space Exploration

1. INTRODUCTION

The evolution of fabrication technologies has enabled the
development of powerful System on Chips containing
multiple heterogeneous processors of different types,
including CPUs, DSPs or GPUs. As a result, these systems
can support large and complex functionalities. In order to
handle this complexity design flows are evolving to start
working at higher levels of abstraction. Designing at higher
levels of abstraction is an effective way deal with large
system complexities, selecting optimal configurations and
verifying system constraints early in the design process. To
do so, two main issues have to be solved. First, it is required
to provide methodologies where designers can easily
describe the system functionality, considering all the
interactions among its functional components. Then,
solutions capable of optimizing the implementation of this
functional description are needed.
Model driven design methodologies are being commonly
adopted to handle the design of large functionalities. Latest

design methodologies start from high-level UML models
combined with algorithmic codes (e.g. C, C++, Matlab, etc.)
of the different system components [1]. In these models, the
user defines the system functionality using a platform-
independent model (PIM). Then, given a platform definition
model (PDM), the PIM is translated to one or more
platform-specific models (PSMs), where resource
allocations are specified.
In order to achieve an optimal solution for the final system,
the most promising platform-specific model has to be
selected before the implementation process starts. Design
space exploration (DSE) solutions have been proposed to
perform this selection process. However, there is still much
work required to develop solutions capable of minimizing
the effort required to provide the accurate estimation metrics
the DSE tools require to evaluate the quality of the different
possibilities. To accurately classify a solution, design space
exploration demands not only modeling and simulation
techniques at the system level, but also a link to initial
implementations. Lower level tools such as ISSs or
virtualization tools are required to estimate design
parameters like power, performance and cost. Furthermore,
the translation to low level implementations is required for a
rapid prototype generation.
However, the connection between high level modeling
languages, such as UML, and the initial implementations
required for performance evaluation currently implies large
synthesis processes; processes that cannot be performed
manually if designers want to enhance the productivity of the
design cycle.
In order to enable the evaluation of various design
implementation options, automatic synthesis of the system
starting from the UML models is required. The proposed
approach performs the synthesis of the different possible
implementations to be explored combining the information
provided in the PIM, PDM and PSM models. System
components, interfaces and functional communication links
are described in the PIM. Physical communication links are
described in the PDM model. Architectural mappings among
PIM components and PDM resources lead to PSM models.
In order to enable automatic synthesis of different solutions,
the components are associated in the PIM model to different
memory spaces. That way, it is possible to automatically
allocate the functional codes to different resources since
global variables and shared memory areas can only be used

by components in the same memory spaces. To do so, each
entire memory space is allocated in a single HW resource.
From these models, the proposed approach generates the
SW infrastructure required to interconnect the different
memory spaces in the different platform resources using
basic communication libraries developed for each physical
communication channel in the HW platform.
The use of the information described in the UML model,
enables the automatic generation of ad-hoc communications
infrastructures supporting interconnection of the different
system component. The synthesis of ad-hoc communication
infrastructures produce more specific and simple results than
previous approaches using solutions such as CORBA or
Remote Method Invocation (RMI) [11], which reliy in more
complex solutions, capable of being reused in a wide range
of use cases. The use of simpler infrastructures provokes a
reduction of communication overloads, which can give
benefits when optimizing embedded system performance.
Additionally, it avoids the effort of manually generating and
filling the skeletons required to apply these generic
communication infrastructures.
In order to present this approach, the paper is divided as
follows. First, the state of the art is described. Second, the
complete flow is presented. In section 4, the UML/MARTE
methodology is shown. In section 5, the synthesis process is
described. Then, an example is described in section 6.
Finally, results, conclusions and future work are presented.

2. STATE OF THE ART

Automatic synthesis of code from high level models has
obtained an important interest in last decade. For example,
several works focused on synthesis for embedded SoCs
design from SystemC approaches have appeared. In [11] a
generic framework for HW/SW communication of
functional tasks with shared resources, called Shared
Objects is presented. Communication is implemented using
a method-based interface realizing a RMI protocol. In order
to analyze timing requirements of the HW/SW blocks
separation and the bindings established among these
HW/SW blocks, the authors propose a transparent
communication mechanism and synthesis support for
communication across the HW/SW boundary. In [12], a
method for systematic embedded software generation is
presented. There, the SW code (processes and process
communication, including HW/SW interfaces) is
systematically generated, from SystemC threads.
However, other non specific high-level modeling solutions,
such as UML, have also been applied in that context. The
application scope of UML [3] has evolved from object-
oriented software systems modeling to cover different design
domains. In this context, research to apply UML to the
design of embedded systems has gained increasing interest,
[1] [2], both in the application of the models in the design
flows and in the evolution of the UML language itself [4].

Most of the efforts spent on the integration of UML within
embedded design processes, have focused on synthesis.
Several researches on synthesis based on UML models are
characterized by the creation of state machine models or
variations of them [13]. In [5], a formal design for
reconfigurable, modular digital controller logic synthesis is
presented. By means of UML state machines concurrent
super-states are modeled, enabling the direct, automatic
mapping on structured array of cells in FPGAs.
Nevertheless, not only state machine modes have been used
for synthesis. In [6], a set of transformation rules for
synthesis of code from UML activity diagrams are
presented. UML Sequence diagrams are used to define
control flow patterns, and then, they are transformed in
Activity diagrams according to a different set of
transformations rules.
Other relevant research area focuses on the development of
HW/SW communications within UML-based
methodologies. In [7] a semi-automatic solution for
generation of HW/SW infrastructure from UML models is
presented. This solution implements high-level
programming interface (software drivers and hardware
adapters) using Remote Method Invocation (RMI) semantics
as the framework to unify the communication interfaces for
all HW and SW components. The automatic generation is
dealt with by means of a template-based mechanism.
In [8], a method is proposed for synthesizing interfaces for
heterogeneous IP integration from UML models. The
framework supports both interface protocol customization
and glue logic generation, thereby maximizing IP
integration. Additionally, the framework enables the
generation of the communication links among the system
blocks from UML profiles used to model the system level
communication interfaces.
However, UML, as a completely generic language, usually
lacks of all the semantics required to adequately model all
the characteristics of embedded systems. In order to confront
the challenge to cover the complete design flow of real-time
embedded systems, the MARTE profile was created [4].
Taking MARTE-based models as input, several synthesis
approaches have also been proposed. Gaspard2 [10] is a
design environment for data-intensive applications which
enables MARTE description of both, the application and the
hardware platform, including MPSoC and regular structures.
Through model transformations, Gaspard2 is able to
generate an executable TLM SystemC platform at the timed
programmers view (PVT) level.
In [9] the complete design flow to move from high level
MARTE models to code generation, for implementation of
dynamically reconfigurable SoCs is presented. In this paper,
generic control semantics for the specification of adaptative
and dynamic reconfigurable SoCs is presented. In [14] a
design flow based on high level languages (SysMl, MARTE,
SystemC…) enables the generation of the deterministic
multi-threaded code for parallel implementations.

Nevertheless, all the previous solutions are oriented to
generation of previously fixed models, leaving architectural
decisions to rely on designers experience. However, with the
improvement of evaluation tools such as virtualization
(Qemu [15], OVP [16]) and DSE solutions [17], approaches
oriented to support configurability, and especially different
resource allocations are required. As a result, this paper
focused on that area.

3. PROPOSED FLOW

The goal of the proposed flow is to enable selecting the most
adequate allocation for the system under development with
minimal design effort. Thus, it is required to provide a way
to describe the system under design, and then, a solution
capable of generating the inputs required by the simulation
tool selected by the designer to estimate the performance
metrics of the different alternatives. ISSs and Virtualization
tools such as QEMU are usually selected for that task. In
both cases, the inputs required are mainly the executable
binary files that should run on the processing resources of
the target platform. Additionally, rapid prototyping solutions
can be also applied to evaluate the different design
possibilities. In that case, similar binary files are also
required. Finally, the resulting files for the selected
allocation can be directly used in the final design or can be
refined by the designer. Thus, the main challenge of this
paper is to solve the automatic generation of these binary
files though a synthesis process.

Fig. 1 Proposed Synthesis Flow.

The proposed design flow (figure 1) starts from the
UML/MARTE model of the system. This model is provided
by the designer. The model is composed of three main
elements. The first one is the platform independent model
(PIM) which describes the functional components, (their
interfaces and the functional code) and the interconnections
among them. Secondly, a platform description model (PDM)
describing the HW platform composed of the available
processing elements and their interconnection. And finally,
the UML/MARTE model contains the architectural

mappings to be evaluated, which are specified in the
platform specific model (PSM) [8]. Additionally, the user
must provide the functional C codes for all the system
components of the PIM.
From this information, an infrastructure developed in
Eclipse generates all the elements required to create the
binary files required for simulation or physical execution.
The elements generated can be grouped in three sets. First,
the infrastructure generates the wrappers that communicate
the interfaces of the components in different memory spaces
using the resources of the platform. Secondly, makefiles are
generated in order to enable automatic execution of the
compilation processes. Finally, linker scripts are generated
when needed, from the information of the PDM.
These elements are used by the compiler together with the
functional C code provided by the user and a communication
library already developed as part of the proposed flow. This
library contains the basic solutions for communicating
components depending on their allocations: different
processes in the same OS, processes in different nodes
communicated by TCP/IP connections, etc.

4. UML/MARTE MODELING

The system under design is specified by an UML/MARTE
model before starting the flow. The graphical orientation of
UML helps designers to handle large systems in an easy
way. However, the UML/MARTE model has to contain all
the relevant, essential information of the system, in order to
enable performing the synthesis process. Thus, it is required
to define a UML/MARTE methodology combining the
benefits of a visual language with large amounts of
information.
To solve that point, the information contained in a
UML/MARTE model is separated in specific concerns,
depending on their application area. Each concern is
captured in a model view, which is represented using the
UML diagrams that most fit the concern. Additionally, the
views of the system model are grouped forming three
different viewpoints: the Platform Independent Model, PIM),
the Platform Description Model, (PDM), and Platform
Specific Model (PSM). The PIM describes the system
functionality (e.g. application, functional code, interfaces).
The PDM describes the different HW and SW resources that
form part of the system platform. Finally, the PSM describes
the system architecture and the allocation of the application
components into the platform resources.
PDM and PSM models can be solved using a single view for
each one, since the information supported is not too wide: a
view describing the HW components of the platform and
their interconnections for the PDM and a view where
memory spaces are mapped to HW resources for the PSM.
However, the description of the functionality requires much
more detail, making the PIM to rely on the use of four views:

Functional view, Concurrency view, Communication view
and Memory-Allocation view. As a result the designer
obtains a complete system model that can be easily handled
to support the system design.
First, the internals of the functional components of the
systems are described using an UML package that is
specified by the stereotype <<FunctionalView>>.
FunctionalView includes both the specification of the
functionality and the interfaces provided and required by
each application components. Each application component
has associated a set of C code files that define the
component functionality. These files are modelled as UML
artefacts using the UML standard stereotype <<file>>.
In a second step, internal concurrency of the system
application components is modelled using the stereotype
<<ConcurrencyView>>. The application components are
modelled by the MARTE stereotype <<RtUnit>> included
in the MARTE subprofile High-Level application modeling
(HLAM). Each RtUnit component has their own execution
thread, providing/requiring services to/from others
application components by means of provided and required
interfaces. The association among files and RtUnits is
defined by means of a UML abstraction, specified by the
MARTE stereotype <<allocated>>, included in the MARTE
subprofile Allocation Modeling (Alloc). An example of view
describing these relationships can be shown in Figure 2.

 Figure 2. <<RtUnit>> components and their associated <<file>>

 Additionally, the ConcurrencyView includes the application
structure, defined by instances of the application
components and the way there are interconnected. The
application components are interconnected by means of
UML connectors that represent communicating channels.
Communications are established through UML ports, where
the provided/required interfaces of each application
component are defined.
The UML connectors are specified by means of the UML
components defined in another model view, the
<<CommunicationView>>, which is also part of the PIM.
The CommunicationView includes the elements that define
the semantics of the channels used to interconnect the
application components. The MARTE stereotype used to
specify these communicating components is the
<<CommunicationMedia>>, included in the MARTE
subprofile Generic Resource Modeling (GRM). The
modeling of the set of specific communication semantics

that a CommunicationMedia can capture is out of the scope
of this paper.
Finally, the allocation of the application components into
memory spaces is dealt with in a system view identified by
the stereotype <<MemoryAllocView>>. The
MemoryAllocView package contains the components that
identify the different memory spaces that are used for the
allocation process of the application components. These
memory spaces are modeled by the MARTE stereotype
<<MemoryPartition>>, which is included in the MARTE
subprofile Software Resource Modeling (SRM).
After modelling the MemoryPartition components, the
application components have to be allocated into these
memory partitions. The mapping of the application
components into memory partitions is dealt with in a UML
composite structure diagram included in the
MemoryAllocView package. In this diagram, the application
instances defined in the ConcurrencyView are mapped into
instances of MemoryPartions components. The application
component instances are mapped to memory partition
instances by means of UML abstractions specified by the
MARTE stereotype <<allocate>> (Figure 3).

Figure 3. Mapping SW components to HW resources

5. AUTOMATIC BINARY GENERATION

From the UML model and original C code that implement
the application functionality, the generator produce a set of
files that includes C wrappers that enables the
communication among the application components and the
compilation scripts. The interface wrappers use the facilities
provided by a communication library to implement the final
communication mechanisms.

5.1. Interface wrappers

The code generator takes the UML model to extract the
necessary information for application components and its
communications.
This information must be reflected on the model and
contained in the corresponding system views:

• the ConcurrencyView where the application
components are defined, and the way they are
interconnected; the required/provided interfaces
and the channels

• the CommunicationView where the communicating
components are defined

• the PDM view, where the physical communication
mechanisms are displayed

• the PSM, where the resource allocations are
described

 All this information is used by the code generator to write
the communication wrapper codes depending on the
allocation of each component involved in each
communication, details about the arguments that have to be
transferred on each communication (data type, size, and
direction: in, out or inout), and the physical resources the
HW platform provides to communicate the processors.

5.2. Communication libraries

A library for communication between the application
components was implemented. This library is based on the
client-server paradigm.
On the client side when an application requires a service
from other application, the client application generates a
new thread for the request. Firstly, this thread generates, for
each parameter of the service, a parameter structure with
the information about the parameter: an unique identifier in
the call, the size of the data parameter in bytes, the type (e.g.
return, in, inout), a flag indicating if the parameter is pointer
or not, and the pointer indicating where the data is in the
process local memory. Then, the thread generates a request
structure with the information of the request with the type
(blocking or not blocking), the identifier of the function
required, the number of parameters, and finally links into
this request structure all parameter structure created before.
The request structure is used by the interface
communication to store data in the channel and to modify
local data when the request is completed. Finally, if the
request is non-blocking, the thread finishes, doing the
opposite in the blocking case. Once the response is
available, the thread modifies locally the original data for
the new one and finishes.
On the other side, the server has an active part, which is in
charge of constantly listening to each incoming
communication channels waiting for the requests. When one
request through a communication channel is received, the
server registers the data and generates a new thread to attend
it, and continues listening to the communication channel. So
then, once the petition is completed, the server stores the
new data in the communication channel.

5.3. Execution flow structure

As a result of the previous elements, several execution flows
can be found in the resulting code. In addition to all
execution flows required by the functional components to
execute their functionality, each server application has one
thread attending each channel which it is connected.

Moreover, to attend each request a new thread will be
generated, finishing when request is completed.
On the other hand, the client application has its own
execution flow and generates a new thread when it needs
require a service from other different application
component. The request could be blocking or not, so it is
necessary to allow that the application flow can wait the
response or not and continue.

6.MULTI-PROCESS EXAMPLE

An application example has been developed to check the
abilities of the proposed approach for exploration activities.
The application consists on four application components.
Two components acts like servers providing specific
functionality through provided interfaces. In addition, the
other two components acts like clients requiring, at some
time, the functionalities that are provided by the servers;
both servers are connected with both clients. Each client
obtains a set of two matrixes of points from grey images and
accesses the servers to manipulate them. More precisely, the
clients use the first server to get the inverse image of the first
matrix and then access to the other server to add this inverse
image with the other image.

Figure 4. Architecture of the proposed example

Figure 4 shows the UML model that captures the
architecture of the application with the four application
components, the two server applications and the two client
applications (server_1, server_2 and client_1, client_2,
respectively). The application components are
interconnected by means of UML connectors that represent
communicating channels (ch_s1_c1, ch_s1_c2, ch_s2_c1
and ch_s2_c2). The communication is established through
UML ports, where the provided/required interfaces of each
application component are defined.
In the code synthesized from the UML model, a main
program file is generated by each application. The main files
contain the necessary code infrastructure for the
implementation of the communication among the application
components. Specifically for the server case, the files add an
active element that is listening to the channel of
communication. Additionally, for each system interface

included in the FuntionalView a file is generated in order to
enable the calls to the functions provided by these interfaces.
Finally, once the code files are generated, a makefile is
generated to compile and link the whole application
components with the communication interface to generate
the target executable files.
The proposed infrastructure has been applied to explore two
different implementations of the communications among
clients and services: using fifos from the operating system or
using TCP/IP sockets. The execution of the application
components has been run on two different HW platforms.
The first one was a common laptop (Intel Core 2 Duo
@2.00GHz) and the second one was on a Panda Board
(OMAP4430 Cortex-A9 @1.0GHz). The execution worked
with 1920x1080 matrixes of integer values. From these
simulations, the results of table 1 have been extracted.

Board Laptop
App. TIME

Fifo Socket Fifo Socket

REAL 2.127 2.835 0.338 0.829
USER 0.750 0.797 0.124 0.128

Client
1

SYS 0.508 0.570 0.100 0.136
REAL 2.201 2.990 0.356 0.732
USER 0.852 0.781 0.136 0.132

Client
2

SYS 0.445 0.852 0.080 0.092
Table 1. Execution times of the proposed example

The proposed approach has enable performing the
comparison without manual porting effort. As a result, it can
be stated that fifo communications are faster than sockets,
which can lead to an optimal implementation.

7. CONCLUSIONS AND FUTURE WORK

The proposed approach presents a solution for automatically
synthesizing the SW code of complex embedded systems
from a UML/MARTE models. The automatic synthesis
process enables easy exploration of different allocation of
SW components, since simulators such as ISSs,
virtualization tools and rapid prototyping solutions can be
performed with minimal designer effort.
The system is initially described following the
UML/MARTE standard. The resulting model contains all
information from functionality, HW platform and allocation
required to perform the automatic synthesis. To do so while
maintaining the enough simplicity in the visual diagrams, the
information is displayed in several views.
From this model, a generator synthesize the communication
wrappers completely ad-hoc for the application, reducing the
overhead obtained with more generic solutions.
The approach enables easy exploration by focusing the
system model on the definition of memory spaces. By
identifying the memory spaces of the components, their

interfaces and allocation, it is possible to generate binary
files for different allocations from the same inputs.
Additionally, the generated wrappers can implement
different communications using basic communication
facilities. Communication facilities to connect memory
spaces in the same OS and memory spaces in Oss connected
through TCP-IP protocol have been implemented.
Additional communication types, such as CPU-DSP
communication will be solved in future works. Moreover,
deep analysis on the effect of the proposed communication
infrastructures in system performance, and their comparison
with other infrastructures such as CORBA or RMI are still
pending.

8. REFERENCES

[1] Y. Vanderperren, W. Mueller, and W. Dehaene, “UML for
electronic systems design: a comprehensive overview,” Design
Automation for Embedded Systems, vol. 12, no. 4, 2008
[2] L. Lavagno, G. Martin, B. Selic. “UML for real: design of
embedded real-time systems”, ISBN 1-4020-7501-4.
[3] “UML profile for system on chip (SoC) specification”. 2006
[4] OMG: "UML Profile for MARTE", www.omgmarte.org, 2009.
[5] M. Adamski. Design of reconfigurable logic controllers from
hierarchical UML state machines. 2009 4th IEEE Conference on
Industrial Electronics and Applications, ICIEA 2009
[6] S. Kang, H. Kim, J. Baik, H. Choi, C. Keum.Transformation
Rules for Synthesis of UML Activity Diagram from Scenario-
Based Specification. IEEE Proceedings of 34th Annual Computer
Software and Applications Conference (COMPSAC), 2010.
[7] J. Barba, F. Rincón, F. Moya, D. Villa, F.J. Villanueva, J.C.
López. “Automatic HW/SW Interface Generation for Seamless
Integration from Object-Oriented Models”, International
Conference on Embedded Systems & Applications. ESA, 2009.
[8] S. Zhenxin, W. Weng-Fai. A UML-based approach for
heterogeneous IP integration. Proceedings of ASP-DAC, 2009.
[9] I. R. Quadri, H. Yu, A. Gamatié, E. Rutten, S. Meftali, J-L.
Dekeyser. Targeting reconfigurable FPGA based SoCs using the
UML MARTE profile: From high abstraction levels to code
generation. International Journal of Embedded Systems, 2010.
[10] É. Piel, R. Atitallah, P. Marquet, S. Meftali, S. Niar, A. Etien,
J.-L. Dekeyser, P. Boulet: "Gaspard2: from MARTE to SystemC
Simulation", proc. of the DATE'08 workshop on Modeling and
Analysis of Real-Time and Embedded Systems with the MARTE
UML profile, 2008.
[11] P.A. Hartmann, K. Gruttner, P. Ittershagen, A. Rettberg.”A
framework for generic HW/SW communication using remote
method invocation”. ESLSyn, 2011.
[12] F. Herrera, H. Posadas, P. Sánchez, and E. Villar, “Systematic
Embedded Software Generation from SystemC”, DATE, 2003.
[13] D. Harel, H. Kugler, and A. Pnueli, “Synthesis revisited:
Generating statechart models from scenario-based requirements,”
Formal Methods in Software and System Modeling, 2005.
[14] V. Papailiopoulou, et al: “From design-time concurrency to
effective implementation parallelism: The multi-clock reactive
case”. Electronic System Level Synthesis Conference, 2011
[15] QEMU, www.qemu.org
[16] Open Virtual Platforms, http://www.ovpworld.org/
[17] Multicube Explorer, http://home.dei.polimi.it/zaccaria/
multicube_explorer_v1/Home.html

