

UML/MARTE

Methodology

for DSE

April, 2015

Microelectronics Engineering Group

TEISA Dpt. , University of Cantabria

Authors: P. Peñil

- 2 of 20 -

Index:

1 INTRODUCTION.. 5

2 DSE VARIABLES.. 5

2.1 DSE variables for components ..6
2.1.1 DSE parameters definition in the stereotype attributes6
2.1.2 DSE parameters definition in the ExpressionContext ...7

2.2 DSE variables for instances ...7

2.3 DSE Allocation variables ...8

2.4 Default Values ...8
2.4.1 Default Values for DSE variable in components..8
2.4.2 Default Values for DSE variable in instances...9

2.5 DSE variables for concurrency exploration ...10
2.5.1 DSE variables for channel types Default Values for DSE variable in

instances 10
2.5.2 DSE variables of application component ..11

3 DSERULE.. 12

3.1 Definition of DseRule parameters ...12

3.2 Definition of DseRule expression...13
3.2.1 Conditional structure ..14
3.2.2 Or logic operand ...15
3.2.3 And logic operand ..15
3.2.4 Combined rules...15
3.2.5 Allocation DSE rule ..16

4 METRICS... 17

5 ANNEX I: METHODOLOGY STEREOTYPES 20

- 3 of 20 -

Index of Tables:
Table 1 Logic operands 14

Table 2 Algebraic operands 14

Table 3 Decision structure 15

Table 4 Logic structures 15

Table 5 Allocation operands 16

Table 6 Processor metrics 17

Table 7 Caches metrics 18

Table 8 HW Bus metrics 18

Table 9 System metrics 18

- 4 of 20 -

Index of Figures:
Figure 1 Example of DSE parameters with DSE variable declaration 6

Figure 2 Example of DSE parameters without DSE variable declaration 7

Figure 3 Example of DSE parameter definition by using ExpressionContext
constraint 7

Figure 4 Example of DSE parameter with a DSE variable declaration for an
instance 8

Figure 5 Example of DSE parameter without a DSE variable declaration for an
instance 8

Figure 6 DSE parameter with MARTE Assign 8

Figure 7 Definition of default values of an explicit DSE variable 9

Figure 8 Default values of DSE variables defined in implicit style 9

Figure 9 Default values of DSE variable defined in a stereotype attribute 9

Figure 10 Definition of default values of DSE allocation parameters 10

Figure 11 DSE parameter definitions for channel types 11

Figure 12 DSE parameter definition for application components 12

Figure 13 DseRule stereotype definition 12

Figure 14 DseRule specification 13

Figure 15 DseRule specification for allocation 13

Figure 16 DseRules with logic operands 14

Figure 17 Assign Examples 16

Figure 18 DSE allocation examples 16

Figure 19 Combined DseRules 17

Figure 20 HW Metrics specification 18

Figure 21 System Metrics specification 19

UML/MARTE methodology for DSE

- 5 of 20 -

1 Introduction

An important modelling feature in the UML/MARTE methodology is the
possibility to define exploration parameters. It enables the use of the model to feed
design exploration activities, and specifically, the application of analytical and
simulation-based DSE methodology. The information captured in the model enables to
connect to the VIPPE host simulator and the MOST DSE exploration tool.

2 DSE Variables

The most flexible and compact MARTE mechanism devised so far to specify the
DSE parameter is to use a VSL expression called input VSL parameters in the
specification of an attribute. The expression would be of the type:

dir$ParameterName = DSEValueSpecification

There “dir” is of VariableDirectionKind type. Literally, the MARTE standard
states the semantics of the VariableDirectionKind type as “Nature of the created

variable: input, output, input/output. The complete semantics of this attribute depends

on the context on which the variable is created”. In the modelling methodology we can
state that a value “in” means a parameter of the model, which a DSE exploration tool
can tune. There “dir” is the direction and its value should be “in”. In this notation the
direction could be omitted, so it can be self-understood that the parameter is an input
parameter if the direction is not present.

The DSE values specification can be:

1. An expression of all the potential values as a VSL collection: ({v1,v2,v3}, unit)
2. An expression of all the potential values as a VSL interval: ([vmin…Vmax], unit)

In the case DSE parameter does not have associated a physical unit, it can be
omitted.

There is an issue with the latter style. VSL does not contemplate the specification
of a quantization step. A proposal could be to add the step annotation, of the type
([vmin…Vmax, step], unit). This involves a minor extension of VSL.

There is a special case in the definition of an interval DSE parameter definition.
As a general rule, the step is defined by a number. However, in this methodology a
different step specification is considered; the step is defined as exponent 2. In this case,

UML/MARTE methodology for DSE

- 6 of 20 -

the step is defined as exp2; the values of the interval follow a geometrical progression,
i.e., the second value is “vmin x2”, and so on.

2.1 DSE variables for components

In order to define DSE parameters in components two expressive mechanism:
DSE parameter in the stereotype attributes or in ExpressionContext constraints.

2.1.1 DSE parameters definition in the stereotype attributes

Each type of HW component is specifed by a specific MARTE stereotype
(<<HwProcessor>>, <<HwBus>>…). Each of these stereotypes, specific component
characteristics can be defined (frequency, band width…).

For this set of properties, for instance, NFP_Frequency for the processor
frequency example, would state the range of the variable (and so its contribution to the
dimension of the design space).

The DSE parameter can be annotated in two different styles:
1. explicit DSE parameter declaration:

a. $frequencyProc=({100,200,300}, MHz)

b. in$frequencyProc=([100…300,100], MHz)

c. Examples of Figure 1.

Figure 1 Example of DSE parameters with DSE variable declaration

2. implicit DSE parameter declaration:
a. ({100,200,300}, MHz) associated to a frequency attribute
b. Examples of Figure 2. In these examples, the specification of the DSE

parameters is captured by annotating the values. In these cases, the DSE
variable is inferred from the model element and the attribute to be
explorer: nameElement_attributeName. In the examples of Figure 2, the
DSE variables are “$Bus_bandwidth” and
“$RAMMemory_memorysize”. The attributes considered are: frequency,
memorySize, memoryLatency, wordWidth, bandwidth, cycle, hit, miss,

staticConsumption, acces.

UML/MARTE methodology for DSE

- 7 of 20 -

Figure 2 Example of DSE parameters without DSE variable declaration

2.1.2 DSE parameters definition in the ExpressionContext

The other modelling mechanism considered for DSE parameter definition in
components is by using a UML constraint specified by the MARTE stereotype
<<ExpressionContext>>. The ExpressionContext constraints are owned by the
component which the DSE parameters are defined for.

In this style, an explicit DSE parameter is defined in the corresponding attribute.
In the example of Figure 3, the attribute frequency is parameterized by the DSE variable
“$frequency_processor”. Then, in an ExpressionContext the potential values of this
DSE variable are specified.

Figure 3 Example of DSE parameter definition by using ExpressionContext constraint

The implicit style for this DSE variable specification is not allowed.

2.2 DSE variables for instances

 With the previous DSE variables specification styles, all component attributes
can be parameterized. However, fixing a value on a component parameter fixes the
same value on all the instances of the component. Therefore, an instance-level
parameterization mechanism is necessary for enabling a more flexible DSE.

The mechanism proposed is to use a UML constraint and link it to the UML
property which represents the component instance. The UML constraint is then
stereotyped with <<ExpressionContext>>, which enables the capture of the VSL
expression.

Again, two different types of DSE variable specification can be considered; the
first one a DSE variable is explicitly declared as can be seen in Figure 4.

UML/MARTE methodology for DSE

- 8 of 20 -

Figure 4 Example of DSE parameter with a DSE variable declaration for an instance

The second style only the name of the attribute to be explorer is annotated as can
be seen in Figure 5.

Figure 5 Example of DSE parameter without a DSE variable declaration for an instance

2.3 DSE Allocation variables

Another different DSE parameter enables to capture DSE allocations in order to
explore different application-platform resources mapping. This is captured in a UML
comment specified by the MARTE stereotype <<Assign>>. In the attribute from, the set
of application or memory spaces elements to explore their mapping are attached; in the
attribute to, the set of HW resources used as mapping targets are attached.

Figure 6 DSE parameter with MARTE Assign

An application or memory space can only be included in a from attribute once in
all Assigns.

2.4 Default Values

In addition to the previous DSE expressions, in some cases, the designer can
specify a default value of a DSE variable. This can be useful for system simulation in
cases where the designer wants to simulate the system without considering the complete
DSE process.

The way to define default values depends on the style used for defining the DSE
variable.

2.4.1 Default Values for DSE variable in components

The System componente of the ApplicationView can have can have associated all
the previous modelling variables.

UML/MARTE methodology for DSE

- 9 of 20 -

As was describe in the section 2.1.1, the DSE variables of a component can be
done in two ways: in the stereotype attributes and annotated in an ExpresionContext
constraint.

In the first case, the default values are annotated in a UML constraint that must be
owned by the component. There are another annotation styles:

1. explicit DSE parameter declaration:
a. The default values are annotated in UML constraints according to the

declaration of the DSE parameter: $nameDSEVariable = (value, unit).
Figure 7 shows examples of default DSE variables specification.

Figure 7 Definition of default values of an explicit DSE variable

2. implicit DSE parameter declaration:

a. The default values are annotated in UML constraints according to the
declaration of the DSE parameter: $nameAtribute = (value, unit). Figure
8 shows examples of default DSE variables specification.

Figure 8 Default values of DSE variables defined in implicit style

A same UML constraint can be used for defining all the default values of a
component.

In this case, each default value is separated by semicolon.

For the other DSE variable definition way, (using ExpressionContext constraint),
the default value is annotated in the attribute of the stereotype where the DSE variable is
defined (Figure 9).

Figure 9 Default values of DSE variable defined in a stereotype attribute

2.4.2 Default Values for DSE variable in instances

In the case of DSE parameter specification for instances, in the same UML
constraint where the DSE parameter is defined, the default values should be annotated

UML/MARTE methodology for DSE

- 10 of 20 -

(Figure 4 and Figure 5): annotating the name of the DSE variable and its value (Figure
4) or annotating the name of the attribute and its value (Figure 5).

A special case is the default value specification of the allocation DSE parameters
(defined with Assign comments). An UML constraint owned by the System component
of the ArchitecturalView is used. The notation to use is

$allocation=(to1, from1); $allocation=(to2, from2);…

Where toi are the names of the HW resources where the fromi elements are
mapped.

The UML constraint is associated to the Assign comment by using a UML link.
There should be so many allocation definitions as elements in the attribute to.

Figure 10 Definition of default values of DSE allocation parameters

2.5 DSE variables for concurrency exploration

At PIM level, the concurrency structure of the application can be explored. For
that purpose, two different types of attributes are considered: attributes associated to
communicating channels and attributes associated to application components.

2.5.1 DSE variables for channel types Default Values for DSE
variable in instances

The channels that connect the application components are specified by channel
types defined in the CommunicationView. These channel types are modelled as
component specified by the MARTE stereotype <<CommunicationMedia>>. Then, a
set of properties can be attached to the CommunicationMedia by using the stereotypes
<<ChannelTypeSpecification>> and <<StorageResource>>.

The properties that ChannelTypeSpecification captures are
blockingFunctionDispatching, blockingFunctionReturn, priority, timeout and ordering.

The channel types can have associated a storing capacity which is captured
through the resMult attribute of the MARTE stereotype <<StorageResource>>.

The designer can explorer the potential values of these properties in order to
evaluate the impact in the performance.

In order to define DSE parameters to the previous attributes in a component a
different technique should be used. In this case, the DSE parameters associated to the
component are captured in a UML constraint specified by the MARTE stereotype
<<ExpressionContext>> instead of capturing the DSE on the attributes of the

UML/MARTE methodology for DSE

- 11 of 20 -

stereotypes, that is, using the modelling technique for specifying DSE parameters of
instances. This is due to the different Boolean attributes (blockingFunctionDispatching,
blockingFunctionReturn and ordering) that can be explored. In this case, the default
values of the DSE parameters are defined by the values of the stereotypes attributes,
instead of using a constraint.

So, an ExpressionContext constraint is associated to the corresponding
CommunicationMedia component: the ExpressionContext constraint is owned by the
CommunicationMedia component (Figure 11).

Then, all the previous properties considered for the channel type specifications
should be annotated in the ExpressionContext constraint. The properties no annotated, a
default value will be considered according to the values captured in the stereotypes
applied on the CommunicationMedia (Figure 11). These default values of the DSE
parameters are annotated in the different attributes of the
<<ChannelTypeSpecification>> and <<StorageResource>> stereotype applied on the
CommunicationMedia component (Figure 11).

The DSE parameters of the properties blockingFunctionDispatching,
blockingFunctionReturn and ordering are defined as a collection “({true, false})”
(Figure 11).

The rest of properties can be defined as a collection or interval DSE parameter.

Figure 11 DSE parameter definitions for channel types

2.5.2 DSE variables of application component

Another attribute has can be considered for the concurrency structure exploration.
The attribute srPoolSize defines the maximum number of schedulable resources to
attend to the request for the services provided by the RtUnit.

Again, the DSE parameter is defined in a <<ExpressionContext>> constraint
owned by the RtUnit application component. Then, the DSE variable is specified as

UML/MARTE methodology for DSE

- 12 of 20 -

“srPoolSize”. The potential values are captured as a collection or interval. The default
value of the DSE parameter is captured in the corresponding attribute of the stereotype
<<RtUnit>> (Figure 12).

Figure 12 DSE parameter definition for application components

3 DseRule

The stereotype <<DseRule>> is used to limit the possible DSE combinations
defined rules that reduce the entire DSE design options. The stereotype <<DseRule>> is
applied to an UML constraint.

<<stereotype>>
DseRule

parameters: String [1..*]

expression: String [1]

Figure 13 DseRule stereotype definition

3.1 Definition of DseRule parameters
In the attribute parameters there are defined the DSE parameters that are involved

in the rule. The definition of the DSE parameter is:

dseParameterName=(nameModelElement, identifier)

According to the style selected for the specification of the DSE variables, the
value to be annotated in the “identifier” is different. In the case of explicit DSE
variables declaration, de definition of the rule parameters should be:

� dse1=(Processor2, processor2_frequency)
� dse2=(InstructionCacheARM9, instrCacheSize)

Where “identifier” denotes the specific name of the DSE variable to be annotated.

In the case of explicit DSE variable declaration, the “identifier” denotes the
attribute name:

� dse1= (proc3,frequency)
� dse2=(DataCacheARM9, memorySize)

UML/MARTE methodology for DSE

- 13 of 20 -

Figure 14 shows the declaration of two DSE rule parameters (“dse1” and “dse2”);
“dse1” is related to the DSE parameter “processor2_frequency” and “dse2” with the
memory size of the cache memory “DataCacheARM9”.

Figure 14 DseRule specification

In the case of DSE rule where DSE allocation variables are involved, the way to
specify the rule is:

dseParameterName=(parameterName, allocation)

Where “toNameElement” identifies a model element included in the to attribute of
a Assign comment. Examples of that:

� alloc1= (appli2,allocation)
� alloc2=(appli3,allocation)

Figure 15 DseRule specification for allocation

3.2 Definition of DseRule expression

In the expression attribute there is annotated the specific DSE rule composed of
the parameters associated by means of operands.

The style to annotate the component rules (compoRule) is expressing a logic
operand, the DSE parameter name and a value:

compoRule=(dseName[logicOperand]Value)

Where:

• dseName: name of DSE parameter defined in the parameters attribute of
DseRule

• logic operand: see Table 1

• value: value of the variable

The logic operands are shown in Table 1.

Logic operands annotation

greater than >

UML/MARTE methodology for DSE

- 14 of 20 -

greater or equal than >=

less than <

less or equal than <=

equal ==

not equal !=

Table 1 Logic operands

The examples of Figure 16 shows rules with logic operands.

Figure 16 DseRules with logic operands

There is a constraint in the rule annotation: there are not allowed internal spaces
among the different elements that composed the component rule.

1. (ds1<=300): OK.
2. (ds1 <= 300): WRONG.

Additionally, the arguments of the DSE rules can be specified by adding algebraic
operations. The notation of these kind of operands should be:

((dseName[algebraicOperator]value)[logicOperand](value1[algebraicOperator]value2))

The algebraic operands are shown in Table 2.

Algebraic operands

+

*

-

/

Table 2 Algebraic operands

An example of rule with algebraic operands:

� ((dse1-25)==300)

� ((dse1*2)==350)

3.2.1 Conditional structure

A conditional rule has the key words shown in Table 3. The way of annotating a
conditional rule is:

if[spa](compoRule 1)[spa]then[spa](compoRule2)[spa]else[spa](compoRule3)

Example of conditional rule:

if (dse1>200) then (dse2==300) else (dse3==350)

UML/MARTE methodology for DSE

- 15 of 20 -

Note that among the key words of conditional rules and the operands of the DSE
rule it is required to have a space ([spa]):

1. if (dse1!=150) then (dse2>=200). OK.
2. if (dse1==200) then (dse2>=200) else (dse2<200). OK.
3. if(dse1!=150)then(dse2>=200). WRONG.
4. if(dse1==200)then(dse2>=200)else(dse2<200). WRONG.

It is not allowed nested conditional structures.

Decision structure annotation

conditional structure if…then…else

Table 3 Decision structure

3.2.2 Or logic operand

The way for annotating a DSE rule with or logical structure is:

(compoRule1)[spa]or[spa](compoRule2)[spa]or[spa](compoRule3)…

An example of or logic structure:

(dse1>100) or (dse4==100) or (dse2!=300)

Logic structures annotation

and and … and …

or or …or…

Table 4 Logic structures

3.2.3 And logic operand

The way for annotating a DSE rule with and logical structure:

(compoRule1)[spa]and[spa](compoRule2)[spa]and[spa](compoRule3)…

Example of and logic operand:

(dse2<500) and (dse3>=150) and (dse4==100)

3.2.4 Combined rules

The methodology enables the rule specification where the conditional structure
and the or logic structure and the and logic structure can be combined. This kind of
rules combines conditional structures with:

1. and logic structures

if ((dse2>200) and (dse3==250)) then (dse4==300))

2. or logic structures

if ((dse1>=200) or (dse2!=250) or (dse4<400)) then (dse4==200))

UML/MARTE methodology for DSE

- 16 of 20 -

3.2.5 Allocation DSE rule

Another kind of DSE rules are that make reference to the allocation assignment of
the application entities to the platform resources. It is feasible that during the design
exploration process, designer does not cover all the allocation possibilities and wants to
restrict them. For that purpose, the methodology provides the allocation DSE rules.

Allocation operands annotation

Applied to ->

Not applied to !->

Table 5 Allocation operands

Table 5 shows the operands used for specify this allocation DSE rules. The
allocation operand -> involves that an application is applied to a specific platform
resource. The allocation operand !-> involves that an application can not be applied to a
specific platform resource.

The way to annotate this kind of rules is:

(applicationName[allocationoperand]resourceName)

where:

• applicationName: name of the application entity specified in the attribute
“from” of a <<Assing>> comment.

• allocationOperand: Table 5.

• resourceName: name of the platform resource specified in the attribute “to” of
a <<Assign>> comment.

Figure 17 Assign Examples

Considering the DSE allocation parameters shown in Figure 17, examples of
allocation DSE rule are shown in Figure 18.

Figure 18 DSE allocation examples

The allocation DSE rules can be combined with the previous DSE rules; for
instance with a conditional rule:

if (alloc1->process1) then (alloc2!->process2) else (alloc2->process3)

UML/MARTE methodology for DSE

- 17 of 20 -

Another combination of the allocation DSE parameters with other different DSE
parameters (Figure 19). In this case, these last ones have to be specified as was
previously defined:

if ((dse1>100) and (appli2!->proc2)) then (appli2->proc3) else (appli2-> proc3)

Figure 19 Combined DseRules

4 Metrics

A feature of a DSE process is to define metrics that quantify a specific property.
The metrics are captured by using UML constraints specified by the MARTE stereotype
<<ExpressionContext >>. Then, a VSL expression denotes the metric as:

out$nameMetric (Unit, est)

The metrics can be associated to elements of the HW platform. The metrics
considered are shown in Table 6 (for processors), Table 7 (for caches) and Table 8 (for
bus).

Metrics Unit

load %

instructionsExecuted Integer

energy Nfp_Energy

power Nfp_Power

runningTime Nfp_Time

idleTime Nfp_Time

Table 6 Processor metrics

Metrics Unit

misses Integer

instructionCacheEnergy Nfp_Energy

instructionCachePower Nfp_Power

totalInstructionMissTransfers Integer

dataCacheHits Integer

dataCacheMisses Integer

UML/MARTE methodology for DSE

- 18 of 20 -

dataCacheWriteBacks Integer

dataCacheEnergy Nfp_Energy

dataCachePower Nfp_Power

totalDataMissTransfers Integer

Table 7 Caches metrics

Metrics Unit

accessTime Nfp_Time

transfers Nfp_DataSize

Table 8 HW Bus metrics

Then, the ExpressionContext constraint is associated by using a UML link to the
corresponding HW element, a processor or a bus instance. In the case a metric is related
to caches, the ExpressionContext is associated to the processor owns the caches.

In a same ExpressionContext constraint several metrics of a same HW element
can be annotated; each metrics expression should be separated by semicolons (Figure
20).

Figure 20 HW Metrics specification

The ExpressionContext constraint should be owned by the System component
included in the ArchitecturalView.

Other metrics reference estimations for overall system, no for a specific element
of it. The system metrics are shown in Table 9.

Metrics Unit

Latency Nfp_Time

energy Nfp_Energy

power Nfp_Power

instructionCount Nfp_Integer

Table 9 System metrics

UML/MARTE methodology for DSE

- 19 of 20 -

Again, the ExpressionContext should be owned by the System component
included in the ArchitecturalView and the ExpressionContext constraint should be
associated to this System component by using a UML link (Figure 21).

Figure 21 System Metrics specification

The values estimations can be constrained by means of logical expressions,
reducing the potential values of that metric estimation to a smaller one (Figure 21). The
operands that can be used are shown in Table 1.

UML/MARTE methodology for DSE

- 20 of 20 -

5 Annex I: Methodology Stereotypes

Stereotype Attributes Profile

ExpressionContext MARTE

DSERule
parameters: String [1..*]
expression: String [1] ESSYN

Assign
to: Element [1..*]
from: Element [1..*] MARTE

