UML/MARTE
Methodology for
Heterogeneous System
design

April, 2014

Microelectronics Engineering Group
uc TEISA Dpt., University of Cantabria
DE CANTABRIA Authors: P. Peiiil

Index:

. INTRODUCTION......ccoeieieeeeeeeeeesesssessnsssnnnnnnns 10
Modelling Methodology 10
Definition of model views 12
Modelling process 13
Il. MODEL VIEW SPECIFICATION.........ccooemmmrrrrrnnnssssssmmsnsnnsssssssnns 15
PIM VIEWS ...ttt s s ssss s ss s s s s ss s s ss snsnsnnssnsnnnnns 17
1. [0 I T | 17
1.1. Enumeration Data type 17
1.2. Primitive Data type 17
1.3. Derived Data type 18

1.3.1. Structure Data tYPe......eeeueeeriieiieeitieeteee ettt s 18

1.3.2. ATTAY Data tYPE ...eeiniiiiiii ittt sttt 18
1.4. Specifying data types 19
1.5. Generalization of DataTypes 21

1.5.1. Data Type Generalization for Concurrency Exploration...........cccccoceveneneninccennennns 21
2. FUNCTIONAL VIEW. ... iiiiiirrrrrssnsnas 23
2.1. Files 23
2.2. File specification 24
2.3. Refinement of files 24
2.4. Interfaces 25

2.4.1. INEETTACE SEIVICESeveviiiiiiiititisteste ettt ettt et 25

24.2. Interface INMETitancecooieviiiiiiiiiee e 27
2.5. Libraries 29
2.6. Auxiliary Files 29
3. COMMUNICATION VIEW ... oeeeeieeesesessssssssssssssssssssssssssssssssssssssnnns 30
3.1. Channel type specification 30

3.1.1. Storing Communication MeChaniSm...........cceccverieriieniieiienie e 30

3.1.2. Communication semantics associated with a client application.............ccccveveeernnen. 30

-20f77 -

3.2. Synchronization Mechanisms 32
3.3. Shared Variable 33
4. APPLICATION VIEW.... oo s ssssssssssssnnnsas 34
4.1. Application Components 35
4.1.1. Application Component AIIDULESecvereererrierierieriesieeie e eveseeesreere e e e 35
4.1.2. Association of Files with Application Components............cceecveevereervereeneereesnenes 35
4.1.3. Association of File Folders with Componentsccoecvevverieeienienienieseeie e 36
4.1.4. The main application COMPONENLc.eeruierieerireieriieiierreeie e seeseeeseeeeeesreseaesseensees 36
4.1.5. POTES ettt ettt ettt et b e bt b e e et nae 37
4.1.6. L0703 111 1ST o1 10) ¢ OSSO RPRUPRRR 37
4.2. Application structure 40
4.2.1. System ports: [/O COMMUNICALION........eevcvieriieeriieriieeieeeieeeieeebeeereesreeereesseeenseens 40
4.2.2. SYSEM FIIES 1.uvtieiiieiiiecieecee ettt ettt st e et e e sbe e st e e srbeesnseesnsaesnseean 41
4.2.3. LADIATIES .ottt et sttt ettt et b e b bt s naee 41
4.3. Files Folders 42
4.4. Modelling Variables 42
4.5. Modeling Variable Specification 43
4.5.1. SYStEM COMPONIEIILS....ceuevieiiieriieeriiierteenieerteeettee st eesiteesbeesiteesbeesabeesabeesaseesnbeesaneess 44
4.5.2. LaAn@UAZE ...coovieeiieiiieeee ettt st e naes 45
4.5.3. Path et s 45
4.5.4. CFLAGS and LELAGS ..ottt 45
4.5.5. Compiler and Compiler Pathi........ccceeivieriiiiiiieiieeie e s 45
4.6. Application Components 46
4.7. Concatenation of paths 46
5. CONCURRENCY VIEW.oieeiiiessesssnnns 48
5.1. Thread modeling 48
5.2. Thread structure 49
5.3. Application-Thread association 49
5.4. Initial function values 50
6. MEMORY SPACE VIEW.......cccoiiiirirrnrsnsssssssssssssssssssssssssssssssssssssas 51
6.1. Process modelling 51
6.2. Process structure 51
6.3. Application Allocation structure 52
PDM VIEWSooeeeeeeeeeeeeecssssssssss s sssss s s ssss s ss snssssnnsnnsnnsnnnnns 53

-30f 77 -

7. HW RESOURCES VIEW.......ccoooiiiiiinmmrnrnssesss s s sssssss s sessssmse s 53
7.1. HW Processors 54
7.2. Processor ISA 54

7.2.1. DSP PIOCESSOTS ...eenvieiiieiiiieeiiie ittt sttt sttt ettt e st e st e sabe e st e sabeesateesabeenaees 54

7.2.2. GPU PrOCESSOTS..cuviiiniieiiiieite ettt ettt ettt et et e e s e e et esabeeeabeesnbeesnsee s 55

7.2.3. CPU COPIOCESSOTS ..c.nveentiienireeiieeiteeiteeniteeabeeestteebteesteesbeeeseesabeeenseesabeesnseesnbeesnseess 55
7.3. Processor Caches 55
7.4. HW Processor variables 55
7.5. Network 56
7.6. Network Interfaces 56
7.7. 1/O Components 56
7.8. HW components’ Functional Modes 56
8. SW PLATFORM VIEW.......ccciiiimmmmrrrrinssssssmns s 58
8.1. Drivers 59
8.2. Repository 60
8.3. Parameters 60
8.4. Device 60
PSM VIEWS......ceees e s s s e 62
9. ARCHITECTURAL VIEW.......oiiiiieemrrnnsems s s s 62
9.1. Modelling of the HW/SW platform architecture 62
9.2. Allocation of SW instances to HW instances 63
9.3. Architectural Allocation 63
9.4. Allocation on DSP 64
9.5. Multiple HW resources allocation 65
9.6. Application Allocation to GPU 65
9.7. Thread allocation 66
9.8. Processor identifier 66
10. VERIFICATION VIEW....... oo nnsmss s ssssss s s sssss s s e 67
10.1. Environment components 67

-4 0of 77 -

10.2. Environment component Functionality 67

10.3. Environment component structure 68
10.4. Environment component structure: ports 68
10.5. Environment structure 69
10.6. Memory allocation 69
Y 1 1] 71
1. METHODOLOGY STEREOTYPES.......cccoocmrrrrrrrnnssnemsnnnnsssssssnas 71
2. METHODOLOGY ENUMERATIONS. ... 75

-50f77 -

Index of Tables:

Table 1 Data Specifier Values 20
Table 2 Data qualifier values 21
Table 3 Communication semantics to be implemented 32
Table 4 MARTE stereotypes used for refining the HW platform 53

Table 5 List of Stereotyes and attributes used in PHARAON methodology. 75

-60f77 -

Index of Figures:

Figure 1 Design Flow 10
Figure 2 UML/MARTE view modelling activity 14
Figure 3 Model views 16
Figure 4 Enumeration data types 17
Figure 5 Primitive types 17
Figure 6 Structure Datatype 18
Figure 7 Array modelling 18
Figure 8 Array dimension specification by the Shape stereotype 19
Figure 9 Undef dimesion of an array 19
Figure 10 <<DataSpecification>> stereotype attributes 20
Figure 11 Data Generalizations 21
Figure 12 Data Type generalization for Concurrency exploration 22
Figure 13 Files 23
Figure 14 ApplicationFile stereotype attributes 24
Figure 15 Refinement of Files 25
Figure 16 Interfaces 25
Figure 17 Array size arguments 27
Figure 18 Interface generalization and operation] of Interfacel 27
Figure 19 Interface Inherence 28
Figure 20 Inheritance between interfaces 28
Figure 21 Libraries 29
Figure 22 Auxiliary FilesFolder packages 29
Figure 23 ChannelTypeSpecification stereotype attributes 30
Figure 24 Examples of Channel types 31
Figure 25 Notification resource 33
Figure 26 Shared variable 33
Figure 27 Application components. 35
Figure 28 Association Files-Application components 36
Figure 29 Associations of FileFolders with an Application Component 36
Figure 30 Main application component 37
Figure 31 Channel type attached to the Channel connector 38
Figure 32 Channel stereotype attribute 38

-70f77 -

Figure 33 Assambly and delegation connectors 39

Figure 34 shared variable used by several application components 40
Figure 35 Application Structure 1 40
Figure 36 Application Structure 2 40
Figure 37 System component with files associated 41
Figure 38 System component with libraries associated 41
Figure 39 System component with FileFolder package 42
Figure 40 Specification of Variables 43
Figure 41 UML constraint for application component variables 43
Figure 42 Annotation in a UML constraint for variable specification 43

Figure 43 Example of multiple constaints in the same application component 44

Figure 44 Constrains of the “lmac” application component 44
Figure 45 Constraints with different constrained elements 44
Figure 46 $CFLAGs for native compilation 45
Figure 47 Compiler variable 46
Figure 48 Specification of the System’s base path 46
Figure 49 Application components with different types of model variables 47
Figure 50 Thread components 48
Figure 51 Thread instances which compose the thread structure 49

Figure 52 Generalization of the System component of the Concurrency View 49

Figure 53 Application-thread association 50
Figure 54 Memory partitions 51
Figure 55 Executables definition 51
Figure 56 Specialization of the System component of Memory Allocation View 52
Figure 57 Memory partition allocation 52
Figure 58 HW platform resources 54
Figure 59 HW Specification of a CortexA processor 55
Figure 60 HwProcessor compilers 56
Figure 61 HwProcessor mode specification 57
Figure 62 OS stereotype attributes 58
Figure 63 OS component 59
Figure 64 Driver for DSP management 60
Figure 65 “Parameter” driver property 60
Figure 66 “Device” driver property. 61

-80of 77 -

Figure 67 HW & SW platform architectures 63

Figure 68 Specialization of the System component of Architectural View 63
Figure 69 Memory partition allocation on HW/SW platform 64
Figure 70 Memory partition allocations to DSP 64
Figure 71 Application component allocation to a memory partition 65
Figure 72 Multi HwResources allocation 65
Figure 73 Application functions for GPU mapping 66
Figure 74 Function-GPU allocation 66
Figure 75 Thread-processor mapping. 66
Figure 76 Environment component 67
Figure 77 Environment application components 67
Figure 78 Environment Application components with associated Files 68
Figure 79 Application instances of an environment component 68
Figure 80 Environment Application components 69
Figure 81 Definition of the environment structure 69

Figure 82 Generalization of Environment structure with the System component of
the MemorySpaceView 70

Figure 83 Allocation of environment component to the memory partitions 70

-90f 77 -

PHARAON User Manual References

. Introduction

As stated before, PHARAON specification is based on the UML/MARTE profile that
provides features for real-time and embedded systems. In addition, PHARAON defines
a profile that extends the UML/MARTE profile in order to offer some features for the

specific description of the goals of the project.

T
" Inputs\
Y
C/C++ files = ——
/_J - / Simulation /I;’erformance Performance oy
e B o Code Generator B'”E[L’ﬂ:'\ S / metrln;s:___ﬁ~ 1)
UML/ R - o a_j'
MARTE
' model '|7,_,~ XML files
_ Eclipse | _“"—‘ Parallelization F’clirallelized I/—z—\l
wﬁastru cture tool cl C%El-e-i N

@ { Sin;gllation / OpenMP \ Sirg_ulation' / Performance F’erfortmance @

[iles compiler nary [\ simulator T

\ /— \ _/_ _ p _/ _/m\ k /_'M“‘—' - B

Code Generator)

—\ o 7\ Atform F’hysical‘platform -~

@ atior 4 OpenhtP m B /Rurtim (4
N B QDSS—COI’T]DI? o hedule \\m:{nageD —

Figure 1 Design Flow

The system specification acts as the main input of the PHARAON project (Figure
1). As a result, the model created following the specification methodology must enable
the designer to describe all the system characteristics required to obtain the optimal
design in the physical platform. Thus, the model must combine the experience obtained
in other projects and research activities, specially the COMPLEX project with the
specific requirements specified for the tasks of synthesis, parallelization and run-time
management.

As a result of that combination, the PHARAON partners have decided on the
methodology and the modelling resources that will support the rest of the design
activities in the project. The next subsections describe them.

Modelling Methodology

The complexity of embedded, parallel systems and platforms requires design
methodologies that, based on separation of concerns, enable the design teams to work in
an efficient way. Separation of concerns enables the specialization of the design
process; separate but collaborating sets of designers can deal with different system
concerns (application modelling, HW/SW platform design, etc), improving the
development process. Therefore, well-defined system concerns in the same model
enable designers to focus on their designing domain, guaranteeing system consistency

-100f 77 -

PHARAON User Manual References

by using the same specification language, producing synergy among different design
domains.

Support of this separation of concerns is covered in two steps. First, system
models are divided into three sub-models, following the Y structure commonly applied
in the latest design methodologies. In these flows, designs start with the definition of the
two main starting points: HW platform and expected system functionality, and evolve to
define how to support the functionality in the HW platform.

Following this structure, the system model is composed of different sub-models
defined according to the features they must capture:

e The Platform Independent Model (PIM), which describes the functional and
non-functional aspects of the system functions (e.g. application, functional
code).

e The Platform Description Model (PDM), which describes the different HW and
SW resources that form part of the system platform.

e The Platform Specific Model (PSM), which describes the system architecture
and the allocation of platform resources.

Using these sub-models, the UML/MARTE system design activity takes charge of
all modelling tasks required for initially defining the system under development,
especially in the following aspects:

1. Data types
. Modelling the code files.
Communication interfaces
Channel types

The system application, definition:

2

3

4

5

6. The functionality associated with each application

7. The concurrent structure of the application components

8. The communication media to interconnect the applications
9. Static threads associated with component operations

10. Memory partitions

11. The allocation of the applications into memory partitions
12. The system platform, both at HW and SW resource level.
13. The system architecture:

14. Instantiating HW/SW platform components,

15. Defining the allocation of the memory partition into the platform sources

16. The environment that interacts with the system

-110f77 -

PHARAON User Manual References

However, the integration of all these aspects into the three sub-models is too complex to
be done. This is because UML models are based on graphical descriptions and so the
number of elements that can be described in a model must be limited in order to
maintain the benefits of the visual methodology. As a result, the three models are also
sub-divided into parts, which are called views. Each of the previous modelling tasks are
dealt with by using a model view.

The next sub-sections describe the views, what they are used for and the process defined
to create them.

Definition of model views

There are different model views:

o

Data View: defines the kind of data types used for the information exchange
among the system functionalities. The view is mandatory.

Functional view: this view includes the specification of the interfaces
provided/required by the application components in order to be connected
amongst themselves. Additionally, the view includes the specification of the
files that contains the implementation (functional source code) of each
application component. The view is Mandatoty.

Application View: includes the definition of the application components and
the application structure. Additionally, the view includes the association of the
functional files defined in the FunctionalView with each application component.
The view contains a “System” component that is used for specifying the
application structure. It includes application components interconnected by
using the interfaces defined in the FunctionalView and the communication
mechanism defined in the CommunicationView. Mandatory.

Concurrency view: this view includes all the threads of the system.
Additionally, this view includes the association of the application components
with these threads. The view contains a “System” component that is used for
specifying the threads presented in the model and the mapping of the application
components onto these threads. The view is mandatory.

Communication view: captures the set of communication channels used for
interconnecting the different application components. Additionally, the view
includes the mechanisms used for synchronizing threads and processes. The
view is optional if no communication media are considered.

Memory Space view: defines the memory partitions that model the system
processes as well as the allocation of application components onto these
processes. The view is mandatory.

HW Resource view: provides a description of the HW platform resources. The
view is mandatory.

-120f 77 -

PHARAON User Manual References

)

SW Platform view: provides a description of the SW platform resources. The
view is mandatory.

Architectural view: defines the platform architecture and the mapping of
system processes onto platform resources. Additionaly, this view includes the
association of threads with processors. The view is mandatory.

Verification view: defines the environment components that interact with the
system. The view is not mandatory.

The PIM includes the views:

o

o

Data View
Functional view
Application view
Communication view
Concurrency View

Memory Space View

The PDM includes the views

)

)

HW Resource view

SW Platform view

The PSM includes the view:

o

Architectural view

Modelling process

The following figure shows the proposed steps that are covered by the system
specification methodology defined in this document. These steps guide the designer
through the generation of the complete model required to perform the further synthesis
and parallelization activities. The numbers in the boxes in the figure follow the
proposed modelling step order.

The system specification methodology starts by defining the Model view where

the designer models the data types required for the application and communication
modelling. Then, four different views can be specified independently:

1. Data View: defines the data types used for specifying the arguments of operations

and services of the application components

2. HW Resource view: describes the components of the HW platform. Each
component specification must provide its identifier and its type, and the parameter

values which define it.

-13 0f 77 -

PHARAON User Manual References

3. SW Platform view: describes the components of the SW platform. Each component
specification must provide its identifier and its type, and the parameter values which
define it.

4. Verification View: defines the environment responsible for exciting the system. In a
Test-Driven development methodology, the Verification view would be the first
view to be defined. The following steps are recognized in this activity to achieve the
previous objectives:

5. Identify the different environment subsystems interacting with the system and
define how they interact with the system.

6. Model the functional elements that define the behaviour of the environment
subsystems

7. Instantiate the system and the environment subsystems in order to define the
environment-system structure.

PDM

DataView @

FunctionalView @

HwResourcesView @ SwPlatformView

PDM

VerificationView @

\ 4

CommunicationView @ ApplicationView @ ConcurrencyView @

\ 4

MemorySpaceView @

v v v

PDM ArchitecturalView @

Figure 2 UML/MARTE view modelling activity

After defining the Data View, two model views can be defined in a cooperative
way:
1. Functional View: defines the interfaces used by the applications to communicate,

defining the operations that these interfaces have available and the arguments of
these operations. The arguments are typed by the data types defined in the Data

- 14 of 77 -

PHARAON User Manual References

Model. In addition, the functional elements that define application functionality are
modelled.

2. Application view, which models the concurrency in the system in four ways:
3. Modelling the application components.

4. Associating the corresponding functional elements defined in the Functional view
with each application component.

5. Define the application structure that consists of:

6. The specific structure of each application component defining the internal parts
(application instances and the communicating elements defined in the
Communication view that interconnects these applications)

7. The top of the application structure

8. Communication view: defines the type of channels used for communicating the
application components.

9. Concurrency view: Modelling the static threads created when each application
component is triggered and the operation executed by them.

In the next step, the components of the Concurency view are mapped to memory
partitions. This task is dealt with in the Memory Allocation view where:

10. The memory partitions are defined.

11. The allocation of the fop application instances defined in the Concurrency view are
mapped to the memory partition instances.

The architectural view defines the HW platform architecture, by using instances
of the HW components defined in the HW Platform view and the SW platform
architecture by using instances of SW components defined in the SW Platform view.
Then, the SW instances are allocated to HW instance resources. The second allocation
process that takes place is the allocation of the instances of memory partitions defined
in the Memory allocation view.

With the Architectural view, the system design is completed and the
transformation process from UML/MARTE can be done.

IIl. Model View specification

As was mentioned before, the complete model is organized in views. Each of these
views captures a specific aspect of the system to be designed. The views are modeled as
UML packages specified by the corresponding stereotype. The stereotypes are:

<<DataView>>

<<FunctionalView>>

-150f77 -

PHARAON User Manual

References

<<CommunicationView>>
<<ApplicationView>>
<<ConcurrencyView>>
<<MemorySpaceView>>
<<HwResourceView>>
<<SwPlatformView>>
<<Architectural View>>

<<VerificationView>>

«dataViews
Data Model

«functionalView=
Functional View

«applicationViews»
Application View

«communicationViews
CommunicationView

«concurrencyViews
ConcurrencyView

«memoryAllocViews
MemoAlloc

«verificationViews
VerificationView

«sWPlatformViews»
SWPlatform

«hWResourcesViews
HWPlatform

«architecturalViews
ArchitecturalView

Figure 3 Model views

-16 of 77 -

PHARAON User Manual References

PIM Views

1. Data View

The data model view focuses on the modelling of the data types that will be
involved in the interface services and application operations. These data types are
included in UML class diagrams.

The data model view focuses on the modelling of the data types that will be
involved in the interface operations. The UML elements that can be used to define the
data types of the system are UML Enumerations (enumerated types), UML Primitive
Types (basic data types such as “unsigned char”, “int”, “long long”, etc.) and UML
Data Types that are used to define new data types

The UML elements that can be used to define the data types of the system are
UML Enumerations (enumerated types), UML Primitive Types and UML Data Types.

1.1. Enumeration Data type

The enumerations are captured as UML Enumeration data types and the different
values of the enumeration are modelled as Enumeration Literals (Figure 4).

«Enumerations =Enumeration= «Enumeration=
ControlSignal CommunicationAction LogicFrameMNumber

RTS RECEIVE_ACTION XON

CTs TRANSMIT_ACTION XOFF

DATA IGNORE_ACTION

Figure 4 Enumeration data types

1.2. Primitive Data type

The UML PrimitiveTypes are used to define basic data types. As can be seen in Figure
5, all these data definitions are classic primitive data types in coding.

«dataSpecifications| |«dataSpecification®»| |«dataSpecification»
String Float Bool

«dataSpecification»| |«dataSpecification»
UnsignedShort UnsignedChar

Figure 5 Primitive types

- 17 of 77 -

PHARAON User Manual References

1.3. Derived Data type

The UML DataTypes are used to define new kinds of data. UML Data types are used
for modelling non-primitive data types (derived data types), structured data and arrays.

1.3.1. Structure Data type
Structured Data are modelled by using the MARTE stereotype <<TupleType>>. The
Datatype has a set of properties typed by specific data type or primitive type that
represent the fields of the structured data type.

«DataType»
«DataType» newsupport_pt
+ u:Integer
+cl:integer + v Integer
+c2:integer +d :Integer
+ c3 ! Integer
+tla : Float
+tlb : Float
+tlc : Float
+ t2a : Float «DataType»
+t2b : Float newp_support
+t2c : Float + *support_pt : newsupport_pt
+ size ! Integer

Figure 6 Structure Datatype

When a field of the structure data types is a pointer, an asterisk is annotated in the name
(“newp_support” data type of Figure 6).

1.3.2. Array Data type
Arrays are modelled by using the MARTE stereotype <<CollectionType>>. The
collectionType stereotype is applied to a DataType model element. A property is added
to this DataType. This property should be typed by PrimitiveType or another DataType.
Then, in the attribute collectionAttrib of the stereotype CollectionType that property
should be attached (in Figure 7, property “array128i”).

«collectionType, dataSpecification»
«DataType»
m128i

«collectionType, dataSpecification»
«DataType»
ml28z

«DataSpecification»
size=(16,Bytes)

«CollectionType»
collectionAttrib=arraym128z

«CollectionType»
collectionAttrib=arrayl28i

«DataSpecification»
size=(96*26,Bytes)

+ arrayl28i : UnsignedChar [16]

«shaped» + arraym128z : Float

Figure 7 Array modelling

The dimension of the array is annotated in the multiplicity tag, if the array is
unidimensional. If the array is multidimensional, the attribute should be specified by the

- 18 of 77 -

PHARAON User Manual References

MARTE stereotype <<Shape>>.The definition of the dimensions is {dim1, dim2, dim3}
(Figure 7 and Figure 8). In these cases, the definition of the size (in Bytes) of the array
should be annotated as (X,Bytes)x(Y,Bytes)x(Z,Bytes) or by the notation (X*Y*Z,
Bytes) (Figure 7).

= arrayiulty

Applied stereotypes;

LirL

Profile = Shaped (from MARTE::MARTE_Annexes: :RSM)
Appearance +-E shape: ShapeSpecification [1..1] = {&,3}
Advanced

Figure 8 Array dimension specification by the Shape stereotype

In some cases, the designer can define the dimensions of an array with no specific
value. Figure 9 shows two cases of how to define an array with no specific value of its
dimensions. In the case of a unidimensional array, the size is defined in the tag
multiplicity as [0...*] of the corresponding property of the Datatype. In the case of
multidimesion arrays (by appliying the stereotype Shape), the corresponding dimension
should be specified by “*”. Figure 9 shows these annotations.

«collectionTypes

«collection Type:s
«DakaTypes

“DataTypes
Undefarray UndeFarray
+ undefarray i Integer [*] wshapeds + undefarray : Inkeger

= undefarray

Applied sterectypes: @
LML PR W L'

Profile = Shaped {from MARTE::MARTE_Annexes: :RSM)
Appearance +-[= shape: ShapeSpecification [1..1] = {*,6}

Advanced

Figure 9 Undef dimesion of an array

1.4. Specifying data types

The methodology includes a stereotype for completely specifying the data types. The
attributes associated with this stereotype are:

<<DataSpecification>>

size:NFP_Data [1]

pointer:Boolean [1]

-190f 77 -

PHARAON User Manual References

dataSpecifier: DataSpecifier [1]
dataQualifier: DataQualifier [1]

complexDataType : String [0..1]

Figure 10 <<DataSpecification>> stereotype attributes
The attributes are:

e gsize: defines the size of the data in its memory representation. The attribute size
is NFP_Data, a MARTE data type that specifies the size of a data. The notation
of this MARTE type consists of two values, the value and the unit. It can be
annotated in two different ways:

o size: NFP_DataSize[1] = (value=8, unit=Byte), where the value is a real
number and the unit might be bit, Byte, KB, MB or GB.

o size: NFP_DataSize[1] = (16,Byte).

® pointer attribute: specifies whether the data is a pointer
® dataSpecifier attribute: denotes the C data specifier
® dataQualifier attribute: denotes the C data qualifier

e complexDataType attribute: can only be used when the possible values of the
dataSpecifier and dataQualifier cannot specify the data type. For instance
complexDataType = const volatile unsigned long int.

The list of values of the DataSpecifier attributes is:

<<Enumeration>>
DataSpecifier

None signed int long long int
Char unsigned signed long long
signed char unsigned int signed long long int
unsigned char long unsigned long long
short long int unsigned long long int
short int signed long float
signed short signed long int double
signed short int unsigned long long double
unsigned short unsigned long int void
unsigned short int long long
int

Table 1 Data Specifier Values

-200f77 -

PHARAON User Manual References

The list of values of the DataQualifier attributes is:

<<Enumeration>>

DataQualifier

None
Const
Volatile

register

Table 2 Data qualifier values

1.5. Generalization of DataTypes

The modeling methodology enables the generalization of data types. If the general
element of the UML generalization is a Primitive Type (in Figure 11, the data
“ULONG” and “USHORT”) the specific data is specified by the values of the
corresponding primitive type captured in the attributes of the stereotype
DataSpecification (the attributes dataSpecifier or the complexDataType). If the general
element of the UML generalization is a Data Type (in Figure 11, the data “Byte”) the
specific data is specified by the DataType (in Figure 11 the “QoS” is specified as
“BYTE”).

«PrimitiveTypes «PrimitiveTypes «dataSpecification»
«dataSpecification»| «dataSpecifications»|
ULONG USHORT «DataType»
BYTE

— Tt =

«DataType» «DataType» «DataType» «DataType» «DataType» «DataTypes
IPaddress MACaddress SlotNumber Duration FrameNumber 005

Figure 11 Data Generalizations

1.5.1. Data Type Generalization for Concurrency
Exploration

In order to enable the exploration of the concurrency structure of the system, Data type
generalization is required.

Some modelling constraints are applied to these data type generalizations:
¢ Both data are of an UML Data Type
e The stereotype DataSpecification should apply to both data types

e The attribute complexDataType of the DataSpecification stereotype
of the specific element of the generalization (in Figure 12, the Data
Type DataType Exploration) should be specifed by the name of the

-210f77 -

PHARAON User Manual References

general element of the UML generalization (in Figure 12, the Data
Type DataType).

¢ In the attribute size of the DataSpecification stereotype, the new and
different value of the size (in Bytes) of data should be specifed.

«dataSpecification»
«DataType»
array_memc_tctu

«DataSpecification»
size=(44*36+1172,Byte)

«shaped» {shape={*36}} + array_memc_tctu : data_memc_tctu

[

«dataSpecification»
«DataType»
array_memc_tctu_exploration_biconcurrent
«DataSpecification»
size=(22%36*1172,Byte)
complexDataType=array_memc_tctu

Figure 12 Data Type generalization for Concurrency exploration

-220f77 -

PHARAON User Manual References

2. Functional View

This view defines the functionality required/provided by the application components in
order to exchange data for each particular functionality execution. This functionality is
encapsulated in interfaces that are provided/required by the application components. At
the modeling level, the same interface can be provided by different application
components, although at implementation level these interfaces could be different.

Additionally, this view could include the set of files where the functionality
performed by each application component is defined with C/C++ code.

The UML elements used in this view are:

1. UML Interfaces for modeling the application interfaces
UML Operations for modeling the interface services
UML Parameters for characterizing the interface services

UML Artifacts for modeling the files

A

UML comment for annotating deadlines

All these UML elements can be captured in Class diagrams. The next section will
present the elements of the functional view of the proposed example.

2.1. Files

The files that store the implementation source-code of the applications are modeled by
means of the UML element Artifact. These artifacts are specified by the UML standard
stereotype <<File>>. The Artifacts are specified by a name (annotated in the attribute
“name”) and in the attribute “File name” (where the name and the extension of the file
should be included, Figure 13).

«filew «filew «filew
image filter conversion
= Properties &% Bl console o =
image
UML File name image.c | Name ‘-image
_ Is abstract true @ false Is leaf true @ false
_ Visibility public v
Manifestation 528l Owned attribute [

Figure 13 Files

-230f 77 -

PHARAON User Manual References

2.2. File specification

Each File can be specified in more detailed with additional information. This additional
information is captured in the stereotype <<ApplicationFile>>. The ApplicationFile
stereotype has the following attributes:

6. parallelized: Boolean. The file is specified after the parallelization process.

7. highLevel: Boolean. The file coresponds to a high-level language not directly
compilable (i.e Heptagon from which C can be optained).

8. implementation: String. The file is optimized to be executed in a specific HW
resource: DSP, NEON, GPU, etc. The name annotated should be the same as the
HwWISA of the HW processor specified in the HwResourceView used for the
allocation.

9. notModifiable: Boolena. The file cannot be modified.

10. environment: Boolean. The file corresponds to a test bench of the system.

<<ApplicationFile >>

parallelized: Boolean [1]

highLevel: Boolean [1]

implementation: String [0..1]

notModifiable: Boolean [1]

environment: Boolean [1]

Figure 14 ApplicationFile stereotype attributes

2.3. Refinement of files

Two different kinds of File artifacts can be defined: the artifacts only specified by the
stereotype <<File>> and the artifacts specified by both stereotypes, <<File>> and
<<ApplicationFile>>. In the first case, these files represent the functionality provided in
the initial stage of the design flow. The combination of the stereotypes <<File>> and
<<ApplicationFile>> means that the functionality of the corresponding artifacts has
been refined for executing on a specific HW resource or that it has been modified by an
external tool or by the user. In addition, the latter files can represent different file
structures used for the different stages of the design process. In any case, the model
should capture the relationship between the initial files and the refined files. This file
refinement is captured by a UML Abstraction relationship between a file with a set of
files. This UML abstraction is specified by the UML standard stereotype <<refine>>, as
can be seen in Figure 15. Only one refined file is allowed for each design stage. There is
one exception; when two files contain optimized code for a specific HW resource. For
instance, two different implementations, one for a Neon execution and other one for a

-24 0of 77 -

PHARAON User Manual References

DSP are shown in Figure 15. Depending on the HW resource where the application is
mapped, the code generation annotates the correct file.

«file»

stereo_segmentation

«abstraction» ‘,-'7 A .

«refine»

. «abstraction»

- I
.-~ «abstractiop» “so_ «refine»
.7 «refine»! M
«file» «file, applicationFile» «file, applicationFile»

stereo_segmentation_neon stereo_segmentation_parallel stereo_segmentation_dsp

«ApplicationFile»
parallelized=true

«ApplicationFile»
implementation=DSP

«ApplicationFile»
implementation=neon

Figure 15 Refinement of Files

2.4. Interfaces

The interfaces capture the characteristics of the services provided/required by an
application component in order to establish data exchange.

All the functions included in the same interfaces should be of the same type
(sequential, guarded or concurrent). The same function can be included in different
interfaces.

The application interfaces are modelled by means of UML interfaces. UML
interfaces should be stereotyped by MARTE <<ClientServerSpecification>>. A
ClientServerSpecification provides a way to define a specialized interface that allows its
nature to be defined in terms of its provided and required operations.

«clientServerspecification:
gInkterfaces:
producerInterface

+ getDatal + in: Inkeger{unique})
+ sendDatal): Integer

«clientServerSpecification:s
«Interfaces
consumerInterface

+ getDatal + in: Inkeger{uniquel)
+ sendDatal): Integer

Figure 16 Interfaces

2.4.1. Interface Services
The interface services are modelled as UML operations. The functions can be:

* re-entrant (sequential): no concurrency management mechanism is associated
with the functions and, therefore, concurrency conflicts may occur. It is
modelled by specifying the UML operation as sequential.

e protected (guarded): multiple invocations of the function may occur
simultaneously at one instant but only one is allowed to commence. The others
are blocked until the performance of the currently executing function invocation
is complete. It is modelled by specifying the UML operation as guarded.

-250f77 -

PHARAON User Manual References

e not re-entrant and not protected (concurrent): multiple invocations of a
function may occur simultaneously at one instance and all of them may proceed
concurrently. It is modelled by specifying the UML operation as concurrent.

Service Arguments

The functions have arguments. These arguments are modelled as UML parameters.
These parameters ca be typed by the Data types defined in the Data Model. The UML
parameters can be in, inout and return. The order of the arguments in a function
prototype has to be specified. For that purpose, the name of the UML arguments that
model the function arguments should be defined as order:nameArgument where the
value order defines the order of the argument in the function prototype.

Pointer
The function arguments can be modelled as pointers. By appliying the stereotype
<<Pointer>>, the parameter is defined as a pointer.

Reference

The function arguments can be modelled as references by appliying the stereotype
<<Reference>>.

Qualifier

The function arguments can be specifed by a qualifier by appliying the stereotype
<<ParameterQualifier>>. Values associated with the ParameterQualifier stereotype are

99 <¢

“const”, “volatile” and “register”.

Parameter of a array size

In the functions that a parameter is typed by an array data type, the function declaration
can include parameters which are associated with the size of the arrays (“parameters-
array size”). In order to connect the “size” parameter with the corresponding “array”
parameter, in the attribute Default Value of the “parameters-array size” should
include?? (Figure 17):

® name parameter array.length x()
® name parameter array.length y();
® name parameter array.length z();

A parameter of the same “size” can be used for specifying the size of different
arrays. In this case, each array reference should be separated by a semicolon (Figure
17).

-260f 77 -

PHARAON User Manual References

El Properties 32 . B Console

& 2:array_size

UML Name 2:array_size
_ Is exception true @ false
Is stream true @ false
Direction in v
Visibility public v

array_size="array.length_x();

Default value * array_2.length_x(); |az| | | %)
array_3.length_y();" S
Type Integer e 52 |12 (%)

Figure 17 Array size arguments

2.4.2. Interface Inheritance

The methodology enables interface inheritance. This inheritance allows the redefinition
of operations of the interfaces partitioning the sizes of the data streams sent and
received. These streams are described in the model as parameters of these operations.
The interface inheritance enables the definition of different concurrent structures in
order to explore different design alternatives.

«Inkerfaces
Interfacel

ﬁ operationl
=1+ Y, ownedParameter (53
- &% arraylUnidimensional
+, . .
= dimension

«Interfaces
Interface?

& arrayMultidimensional
. . .
0 dimension_x

R I T R Y

& dimension v
Figure 18 Interface generalization and operationl of Interfacel

All the functions of these interfaces are the same and have the same parameters (with
the same name and order). For the data partitioning, only the parameter to be used for
tha data splitting is necessary to be specified. The only difference is that one parameter
is specified by different data types. This new data type is a generalization of the
previous data type (see section on Data Types for exploration of concurrency structure).

Several parameters of a same function can be used for data splitting (Figure 19).
Several parameters of functions of a same interface can be used for data splitting.

The functions of an interface that are not used for data splitting should not have any
parameters (Figure 19).

-270f 77 -

PHARAON User Manual References

«clientServerspecification»
«Interface»
Interface_Disparity_2

+ removeSmall(+ in: Float_640_480_4{unique}, + in: parameters{unique}, + in: uint32_t{unique}, + in: uint32_t{unique})
+ computeDisparity(+ in: struct p_support{unique}, + in: struc tri{unique}, + in: Float_640_480_4 2{unique}, + in: uint32_t{unique}, ...

«clientServerSpecification»
«Interface»
Interface_Disparity

+ removeSmall()
+ computeDisparity(+ in: Float_640_480 4{unique}, + in: Float 640 480 _4{unique})

Figure 19 Interface Inherence

Additionally, interface inherence is used to join different concurrent flows. This is
explained through an example. The interfaces model the functions provided by the
application components for enabling the applications interconnections. In this case, a
different interface is used. In communication of the components “matchingRight”,
“matchingleft” and “stereoMatching” three different interfaces (Figure 20) are used.
All these interfaces have the same function associated, “stereo_matching”. However,
the declaration of this function in these interfaces is totally different. In the interface
“Interface StereoMatching” the function ‘“stereo_matching” is completely specified,
where all the properties of the function parameters are completely characterized (data
type, size, pointer, etc.). On the other hand, the functions of the other interfaces
(“Interface StereoMatching Right” and “Interface StereoMatching Left”) only specify
the parameters used for joinning. Specifically, in the “stereo_matching” two parameters
are used to join both concurrent flows: “img left” and “img right”. In order to be
executed, the component “stereo_matching” has to be available for both images pre-
processors. However, the two images come from two different, independent, concurrent
flows. In order to specify that a parameter represents an element to be joined, the
corresponding join parameters have to be specified in the generalized interfaces; only
these parameters have to be specified in generalized interfaces (in the example,
“img_left” and “img right”). Then, these parameters are not typed by any data type
which it is understood by the code generator that the parameter is for joining concurrent
flows. In the case of Figure 20, the function “stereo matching” of the interface
“Interface StereoMatching Right” only includes the parameter “img left” which
denotes that this parameter should be provided by other components and, therefore, the
“stereo_matching” has to wait for it. For the interface “Interface StereoMatching Left”,
the parameter specified and not typed is “img_right”.

«clientServerSpecification»
«Interface»
Interface_StereoMatching

sterea_matching()

7 &

«clientServerSpecification= «clientServerSpecifications
«Interface» «Interface»
Interface_StereoMatching_Right Interface_StereoMatching_Left

stereo_matching(1:img_left) stereo_matching(2:img_right)

Figure 20 Inheritance between interfaces

-280f 77 -

PHARAON User Manual References

2.5. Libraries

In order to enable the compilation of the application, a set of specific libraries can be
necessary. Therefore, in order to enable the generation of the makefiles, these libraries
should be modeled. These libraries are modeled as UML Artifacts specified by the
UML standard stereotype <<library>> (Figure 21).

«librarys «library= «library»
mps_rtlib_hisim_pthread z rt
«librarys «library=» «library»
shared_intrinsics ato_dds Srp

Figure 21 Libraries

The Library artifacts can only be associated with the System component included in the
ApplicationView.

2.6. Auxiliary Files

As was described previously, each application component has the files that
implement each specific application functionality associated. However, this files can
require functions that are implemented in other files and which act as auxiliary files that
provide services for the application functionalities. These auxiliary files are modeled as
UML packages in order to represent the folder where these files are allocated. These
files are specified by the stereotype <<FilesFolder>>.

The FilesFolder stereotype has the following attributes:

1. parallelized: the file folder contains files produced after a parallelization
process.

2. highLevel: the file folder contains files that specify high-level functionality.

3. implementation: the file folder conatins files which are optimized to be
executed in a specific HW resource: DSP. NEON, GPU). .

4. notModifiable : the file folder contains files which cannot be modified for any
reason.

5. environment: the file folder contains a test bench.

«filesFolder» «filesFolders «filesFolder»
include src data

«filesFolder» «filesFolder»
rtlib exec

Figure 22 Auxiliary FilesFolder packages

The FilesFolder package can be associated with application components
(RtUnits) and to the System components included in the ApplicationView.

-290f 77 -

PHARAON User Manual References

3.Communication View

The Communication view defines the communication mechanisms that enable the
application components’ communication.

The UML element used in this view is the UML Component used to model the
communication components. Class diagrams are used for defining these communication
components.

3.1. Channel type specification

The generic communication mechanism is modelled by the MARTE stereotype
<<CommunicationMedia>> that represents the means to transport information from one
location to another. Then, new characteristics can be added to the communication media
in order to define a different communicatuion semantics

3.1.1. Storing Communication Mechanism

A CommunicationMedia can be specified with additional characteristics in order to
define different communication semantics. The CommunicationMedia could have the
capacity to store function call requests. To model this characteristic, the MARTE
stereotype <<StorageResource>> can be applied to the CommunicatinMedia. The
attribute resMult of the StorageResource denotes the number of function call requests
that can be stored.

3.1.2. Communication semantics associated with a
client application

Some additional characteristic can be added to the communication media in order to
model the communication semantics associated with the application component that
uses the communication media to access a service provided by another application
component.

The stereotype <<ChannelTypeSpecification>> adds additional characteristics to
the communication media in order to model different communication semantics.

<<ChannelTypeSpecification>>

blockingFunctionDispatching:Boolean [1]

blockingFunctionReturn:Boolean [1]

priority : integer [0..1]
timeOut:NFP Duration [0..1]

ordering : Boolean [1]

Figure 23 ChannelTypeSpecification stereotype attributes

-300f77 -

PHARAON User Manual References

The attribute blockingFunctionDispatching defines the behaviour of the client
application when it requires a service from a server application: the client application is
blocked until the server application attends to the service request.

The attribute blockingFunctionReturn defines whether the client application is
blocked waiting for the response from the service called.

The attribute priority defines the priority associated with client-application client
in order to attend service requests coming from the channel.

The attribute time out defines the maximum time for waiting for a function’s call
response.

The attribute ordering defines whether the concurrent calls transmitted through
the channel have to be synchornized in the function return and to be dealt with as an
ordered set.

«communicationMedia, storageResource, channelTypeSpecification» «communicationMedia, storageResource, channelTypeSpecification»
«Component» «Component»
channel_sequential channel_pipeline
«ChannelTypeSpecification» «ChannelTypeSpecification»
blockingFunctionDispatching=true blockingFunctionDispatching=true
blockingFunctionReturn=true blockingFunctionReturn=false
 priority=1 priority=1

«communicationMedia, storageResource, channelTypeSpecification»
«Component»

channel_concurrent
«ChannelTypeSpecification»
blockingFunctionDispatching=false
blockingFunctionReturn=false

Figure 24 Examples of Channel types

The following table describes the possible semantics that can exist depending on the
values of the attributes blockingFunctionDispatching, blockingFunctionReturn of the
stereotype <<ChannelTypeSpecification>>, the resMult attribute of the MARTE
stereotype <<StorageResource>> and the attribute s7PoolSize of the MARTE stereotype
<<RtUnit>> (explained in the next section). Additionally, the table specifies the
behaviour of the function call communication during execution time. The table denotes:

1. Capacity available in execution time.

2. Value of the attribute blockingFunctionDispatching.
3. Value of the attribute blockingFunctionReturn.
4

Service threads: the application component has threads available in order
to attend to service requests.

9]

Store, the function call request should be stored or not in the channel

6. Block call, the client should be blocked bnefore dispatching its function
call request

7. Block return, the client should be blocked waiting for finalization of the
function called.

-310f77 -

PHARAON User Manual

References

8. Exec, the function called can be

resources are available.

executed or it should be delayed until

Capacity Blocking Blocking Service Store Block Call in Block Exec
Function Function threads the client for for data when
Dispatching Return no channel return thread
attribute attribute cap.ac1ty Not
available .
availab
le
1 available true true available No No Yes Yes
2 available true true Not Yes No Yes Delay
available
3 available false true available No No Yes Yes
4 available false true Not Yes No Yes Delay
available
5 available false false available No No No Yes
6 available false false Not Yes No No Delay
available
7 available true false available No No No Yes
8 available true false Not Yes No No Yes
available
9 | Not available true true available No No Yes Yes
10 | Not available true true Not No Yes Yes Delay
available
11 | Not available false true available No No No No
12 | Not available false true Not No No No No
available
13 | Not available false false available No No No No
14 | Not available false false Not No No No No
available
15 | Not available true false available No No No Yes
16 | Not available true false Not No Yes No Delay
available

3.2. Synchronization Mechanisms

Table 3 Communication semantics to be implemented

To model the synchronization mechanisms among application components, the MARTE
stereotype <<NotificationResource>> is used. NotificationResource supports control
flow by notifying awaiting concurrent resources about the occurrence of conditions.

-320f77 -

PHARAON User Manual References

enotificationResource:
i_omponenk:
nokification

Figure 25 Notification resource

3.3. Shared Variable

The two previous communication mechanisms can be used to connect application
components that are allocated in the same memory partition or in different memory
partitions. An additional communication mechanism can be used in order to enable the
communication among application components. This communication mechanism is the
shared variable. The shared wvariable is modelled by the MARTE stereotype
<<SharedDataComResource>>. SharedDataComResource defines a specific resource
used to share the same area of memory among concurrent resources to exchange
information by reading and writing in this area of memory.

The shared variable can be protected or not. To model a protected variable the
stereotype attribute isProtected should be used. For specifying the type of the shared
variable, a UML property should be included in the UML Component
SharedDataComResource. The type should be included in the DataView. Then, in the
stereotype attribute identifierElements this property should be attached.

«sharedDataComResource»
«Component»
SharedVariable
«SharedDataComResource»
identifierElements=[type]

+ type : Float

Figure 26 Shared variable

-330f77 -

PHARAON User Manual References

4. Application View

This view defines the different software components that are used to build the
system application. The complete system application is composed of instances of these
application components interconnected through ports by channels using interfaces
defining the functionality required/provided by the application components. Interfaces
represent the set of functions that are required/provided by an element from/to its
specific environment. Channels are communication media for connecting application
instances that can have associated communication properties for characterizing data
transmitted.

Additionally, this view includes:

e association of Files included in the FunctionalView with the application
components

e association of the FilesFolders with the application components and the System

e gpecification of the application System structure, composed of instances of
interconnected application components

e association of the libraries with the System

The UML elements used in this view are:

1. UML Component for modeling the application components and for defining the
element where the complete application structure is captured

2. UML Port are the interaction points between the component and its environment

3. UML Connectors for connecting application component instances. These connectors
are channels with specific communication semantics

4. UML Operations for defining internal functions of the application components

5. UML Parameters for characterizing the internal functions of the application
components

6. UML Abstraction for associating Files defined in the FunctionalView with the
application components

7. UML constraint for defining paths, flags, compilers, etc.

8. UML links for associating constraints with model elements

Class diagrams are used for defining the application components and associating
Files, FilesFolder and constraints with application components.

Class diagrams are used for associating Files, FilesFolders, Libraries and
constraints with System components.

-34 0of 77 -

PHARAON User Manual References

Composite structure diagram is used for defining the structure of the application
system.

4.1. Application Components

The application components are modelled by the MARTE stereotype <<RtUnit>>
(Figure 27). RtUnit component has its own execution threads, its associated C files,
providing/requiring services to/from other application components by means of
provided and required interfaces. These provided/required interfaces and C files were
defined in the FunctionalView. Additionally, a RtUnit component can have an
associated set of theads in order to execute some specific functions concurrently.

4.1.1. Application Component Attributes
The following attributes of the <<RtUnit>> stereotype are considered (Figure 27):

e The attribute isDynamic and srPoolsize. In this methodology, we defined
that the value of attribute isDynamic should be true to specify that the
application component creates threads dynamically in order to attend to
the requests for services provided by the RtUnit.

e The attribute srPoolSize should be defined by a specific value in order to
denote that the RtUnit has a finite set of threads to attend to the request for
the services provided by the RtUnit.

e The attribute srPoolPolicy should be infiniteWait to denote that the RtUnit
waits infinitely till a thread finishes attending to a service request if the
RtUnit does not have more threads available.

e The isMain attribute can be considered to denote the main application
which is used for generating a specifc file for the synthezesing code.

«rtunit» «rtunit» «rtunit»
«Components «Component» «Components
Starting MEMC TCTU
«RtUnit» «RtUnit» «REUNit»
isMain=true isDynamic=true isDynamic=true
srPoolSize=10 srPoolSize=10
srPoolPolicy=infiniteWait srPoolPolicy=infiniteWait
«rtunits «rtunit»
«Component» «Components
EC BP
«REUNit» «RtUNit»
isDynamic=true isDynamic=true
srPoolSize=10 srPoolSize=10
srPoolPolicy=infiniteWait srPoolPolicy=infiniteWait

Figure 27 Application components.

4.1.2. Association of Files with Application
Components

The specification of the set of files associated with an application component is defined:
¢ By using an UML Class diagram

¢ By using the File UML artifacts (code files) defined in the FunctionalView.

-350f77 -

PHARAON User Manual References

The code files are associated with a RtUnit component by means of an UML abstraction
specified by the MARTE profile <<Allocated>> (Figure 28).

«rtlnits artlnite
«Components «Components
EC TCTU
) A _
| «abstractions | «abstraction»
! «allocateds= : «allocateds=
I)
afilew afilew
EC cTu

Figure 28 Association Files-Application components

4.1.3. Association of File Folders with Components

The application componets can have associated FileFolders. These FilesFolders are
associated with the application components such as Files: by using a UML abstraction
specified by the stereotype <<allocated>>.

«filesFolders «filesFolder»
Imac facets

«filesFolder»
states

N i
«abstraction» *, «abstraction» | «abstraction»
«allocated» s allocateds ! «allocated» .-~
N i e

v -t
«rtUnit» = «Allocated» -
«Component» g o e c e «filer

Imac ComponentCoreH

«file»
A ComponentCoreCpp
i

«Allocated»
«abstraction» |
«allocated» !

«filesFolder»
mac

Figure 29 Associations of FileFolders with an Application Component

4.1.4. The main application component

The main application component is identified by the RtUnit attribute ismain, specified
as “true”. Thus, this RtUnit component should have an associated UML operation. This
UML operation should be given the same name as the main procedure of the
functionality. This UML operation should be associated to the RtUnit component
through the RtUnit attribute main.

-36 of 77 -

PHARAON User Manual References

] Starting
Applied stereotypes:
«rtUnit> Profile — EIRtUnit (from MARTE::MARTE_DesignModel::HLAM)
«Compqnent» _ + &l isDynamic: Boolean [1..1] = true
Startlng + @ isMain: Boolean [0..1] = true
«RtUnit» + @ srPoolSize: Integer [0..1] = 0
isMain=true
main=main_app _ Applied stereotypes:
Profile B STPOUIWAILNG THMED NFF_LUUrduorn [U.. 1] = nui
= operationalMode: Behavior [0..1] = null
—

+ & main: Operation [0..1] = main_app
= memorySize: NFP_DataSize [0..1] = null

Figure 30 Main application component

4.1.5. Ports

Communication among application components is established through UML ports. The
ports denote the services encapsulated in the interfaces that the application component
required or provided. These ports must be modeled in different ways depending on the
type of communication:

When communication is by means of function calls of interfaces, the UML ports should
be specified by the MARTE stereotype <<ClientServerPort>>. In the attribute kind of
the ClientServerPort stereotype, the port is specified considering whether the port
provides or requires an interface. In the attributes provinterfaces and reqlnterface, the
interface required or provided by the port is defined. Only one interface can be attached
to the ClientServerPort. The ClientServerPort can be either provided or required.

In other communication mechanisms, the UML (shared variable and synchronization
mechanism) ports should not be specified by any stereotype.

4.1.6. Connectors

The ports are connected by using UML connectors. The conectors can represent
simple connections or communication channels.

The former defines the connection between an application element and a shared
variable. Additionally, in a communication based on interfaces, a simple connector
denotes a pure RCP (Remote Call Protocol) in the client-server communication
paradigm.

Channels

The connectors among the application elements can respresent specific communication
channels with a well-defined semantics. In this case, the UML connectors should be
specified to define the semantics of communication established among the application
components. The stereotype <<Channel>> enables the specification of a UML
connector by a communication mechanism defined in the CommunicationView. The
attribute of the Channel stereotype is channelTypeSpecification, which defines the
communication mechanism specified in the CommunicationView. In this attribute, a
channel type captured in the CommunicationView is attached (Figure 31).

-370f77 -

PHARAON User Manual References

E Properties 52 = ¥ =0

+ Connector9
Applied stereotypes: || |(#8| Property values:

Profile - Channel (from PHARAON_Profile) s model::CommunicationView::Channel

_ + @ channelTypeSpecification: Component [1..1] = Channel
_ + @ communicationEngine: CommunicationEngineKind [1..1] = default
+ = communication0SService: Communication0SServiceKind [1..1] = undef

Figure 31 Channel type attached to the Channel connector

Each UML connector specified by the Channel stereotype identifies a different
communication channel to be implemented.

In order to capture this implementation information, the <<Channel>> stereotype
is associated with additional attributes. The attribute communicationEngine is an
enumeration with a set of communication libraries independent of the platform. The
possible values are MCAPI, OpenMP, OPenStream, TCP/IP and default are;

e MCAPI is a standard communication API for distributed embedded
systems.

e OpenMP 1is a library for multi-processor programming of shared
memories.

e OpenStream is a data-flow extension of OpenMP to express dynamic
dependent tasks.

TCP/IP protocol of data transmission.
® undef means the previous communication mechanism is not used.

A second attribute of the Channel is communicationOSService. This attribute is an
enumeration that denotes different communication mechanisms provided by an OS. The
possible values are FIFO channels, sockets, message queues, shared memories, files.

When the values of the attributes communicationEngine and
communicationOSService are undef and default respectively, it means the
communication mechanism implemented for a channel derives from the OS where the
interconnected application components are mapped.

<<Channel>>

channel TypeSpecification: Channel TypeSpecification [1]

communicationEngine: CommunicationEngineKind[1]

communicationOSService: CommunicationOSServiceKind [1]

Figure 32 Channel stereotype attribute

Only UML assembly connectors (in Figure 33 the UML connector established between
the elements “imageAcquisition” and “imagePreProcessing”) should be stereotyped by
the Channel. The UML delegation connectors (in Figure 33 the UML connectors that
interconnect the “imageAcquisition” ports “port Condev”, “port disDev” and
“portCaplmage”) with ports of the System which establishes communication with the
environment.

-380f 77 -

PHARAON User Manual References

imageAcquisition -

=clientServerPorts structure

port_ConDav port_ConDev

1 I
[, {1
=clientServerPorts
from_starting
[L]

«clientServerPort= - L

E]—%[] port_disDew achannel=

=clientServerPorts
port_caplmage

EJ E:I port_caplmage

=clientServerPort=

to_image_preprocessing
=channel=
=clientServerPort=
from_image_Acq

imagePreProcessing
strecture

Figure 33 Assambly and delegation connectors

Communication Mechanism and Interfaces

The previous communication mechanisms enable the information exchange among
applications through function calls provided by interfaces. The same interface can be
provided by different application components or can be provided through different ports
by the same application interfaces. The Channel connectors that are associated with the
same interface represent the same channel in the implementation stage. Therefore, these
Channel connectors should be typed by the same communication media defined in the
Communication View, thus ensuring the model coherence: the communication media
should have the same interface associated with the application ports.

Connection through shared variables

A shared variable can be used for communicating two or more application components.
For connecting application components with the same shared resource, an instance of a
SharedDataComResource has to be included in the composite structure diagram of the
System component of the ApplicationView. Then, the application components are
connected to this SharedDataComResource instance by using UML connectors (Figure
34).

«Components»
system
structure

sharedvarl appli3
structure structure

applil

structure
appli2
structure

-390f77 -

PHARAON User Manual

References

Figure 34 shared variable used by several application components

4.2.

Application structure

In order to define the top application structure, a UML component is used. This
component is specified by the stereotype <<System>>. This System component
constains instances of the RtUnit application components interconnected by using
connectors that can represent communication channels or shared variable accesses.

The application structure is captured in a UML Composite Structure diagram
associated with the System component.

Only one System component should be defined within the ApplicationView

package.

from_starting
«clientServerPorts
{provinterface=[Interface_Starting] MEMC]}

«channels

«clientServerPorts
{reqginterface=[Interface_Starting

+ starting : Starting |:|C

structure

MEMC]}
to_memc

{channelTypeSpecification=channel_sequential}

«systems
«Components
MPEG-4_Encoder_PIM
structure
+ memc : MEMC | [+ tctu - TCTU
structure 2 05 «channel» structure
- {channelTypeSpecification=channel_sequential} sciienlSensiBorie
«clientserverPorts from memc {reginterface=[Interface_TCTU| EC]}
{reginterface=[Interface_MEMC|TCTU]} «clientServerPorts -
{provinterface=[Interface_MEMC| TCTU]} ’T‘

=clientServerPorts
{provinterface=[Interface_TCTU_EC]}

=clientServerPorts

{provinterface=[Interface_EC BP]}

+ bp: BP

+ec: EC
structure

«clientServerPorts
{reginterface=[Interface_EC_BP]}

«=channel»
channelMypeSpecification=channel_sequential
from_ec

structure

Figure 35 Application Structure 1

=systems
«Companents
Image_Processing_Application_System

imageAcquisition

«clientServerPorts

port_CanDev Slucise
0 port_ConDev
«clientServerPorts
port_disDev
] port_disbev

«clientServarPorts
port_caplmage

port_caplmage

to_image_preprocessing
«channels
=clientServerPorts
from_image_Acq

imagePrePracessing
‘structure

sclientServerPorts
from_starting

«channels

‘structure

starting
structure

to_readaccess

«clientServerPorts

7 to_image_acq

aclientServerPorts
to_stare i

sclientServerPorts

imageaccess
structure
«clientServerPort> from_startihg

«channel=

«clientServerParts

from_ erPart= from

stereosegmentation
structure
w

=channel=

aclientServerPorts
to_imageaccess.

«channels

=clientServerPorts
toi .

wclientServerPorts
0_stereosegmentation

structure |
«clientSefverPorts from_starting
t

imagemapping

«channel» Snuchee]
L1 «clientServerPorts
from_starting

Figure 36 Application Structure 2

4.2.1.

System ports: I/0 communication

The System communicates with the external environment.

This environment

communication is established through ports. These UML ports should be specified by

-40 of 77 -

PHARAON User Manual References

the MARTE stereotype <<ClientServerPort>> (Figure 33), specifying the correct values
of the attribute kind, provinterface and reqlnterface depending on the communication is
dealt with using function calls. If not, the ports should not be stereotyped.

These System ports connect with an application instance. This connection is port-
to-port and the name of the application component port has to be the same as the System
port (Figure 33). The application component port are not stereotyped. The connection
between the System port and the application port is never stereotyped (Figure 33).

4.2.2. System Files

The System component may have associated files. These files are defined in the
FunctionalView and identified by the UML standard sterecotype <<File>> and by the
PHARAON stereotype <<SystemFile>>. These files are associated with the System
component through a UML abstraction specified by the MARTE stereotype
<<allocated>>, as is shown in Figure 37.

wsyskems
«iZamponent:
PIM
N M _

| «abstraction: 1 «abstraction:
! «allocateds : «allocated:

I)

«file, svstemFiles «file, systemFiles
filel filez

Figure 37 System component with files associated

4.2.3. Libraries

In order to enable the compilation of the application, a set of specific libraries can be
required in order to enable the makefiles’ generation

The Libraries defined in the FunctionalView are associated with the System
component by means of UML Use relations, as Figure 38 shows.

«use»
e «library»
s [T~
s «Component» @ A ato_dds
MPEG-4_Encoder_PIM .

«use»

[~ - - _ «use»

«library» |l -y «library»

sp

.
«! L TS
e 2" «use»

,f «user v
e y
«library» «library»

lshared_intrinsics

imps_rtlib_hlsim_pthread|

Figure 38 System component with libraries associated

-41 of 77 -

PHARAON User Manual References

4.3.

Files Folders

The FilesFolders packages defined in the FunctionalView are associated with the
System component by a UML abstraction association specified by the MARTE
stereotype <<Allocated>>. The designer is free to include the corresponding UML
artifact files in these packages in order to model the real auxiliary files explicitly; this is
not mandatory.

4.4.

«filesFolder»
include «abstraction» «abstraction»

«allocated» «allocated»

. «Component> @ «filesFolder
"7~--»] MPEG-4 Encoder PIM exec
I —
«filesFolder» -7
- 5" «abstraction»

A <~ «allocated»

-7 «abstraction»
«allocated»

| «abstraction»
1+ «allocated»

' "
«filesFolder» : gglt:anlder»
tib :

Figure 39 System component with FileFolder package

Modelling Variables

The model has modelling variables. More specifically, in the modelling of the
application, these modelling variables are used to define characteristics required for
completely characterizing the application components of the system in relation to the
makefiles’ generation and code generation. The modelling variables are:

l.

language: specifies the language in which the specific application
functionality is implemented. Not mandatory (by default, it is “C”).

path: specifies the path where the functional files are allocated in the
host. Mandatory for the System component.

path_system: specifies a path of a File or FilesFolder of a application
component that has as first part of the absolute path, the path associate to
the System component

creation: specificies the mechanism used to create a specific application
component instance. Mandatory only when the language is “C++”.

cc_compiler: specifies the C compiler.
cxx_compiler: specifies the C++ compiler.

path_compiler: specifies the path where the compiler (C or C++) is
allocated.

CFLAG: defines the compilation flags
LFLAG: defines the linking flags.

-42 of 77 -

PHARAON User Manual References

4.5. Modeling Variable Specification

The variables are annotated as $nameVariable="valueVariable”; as Figure 40 shows.

MAC_LMAC_variables
{$language="c++";
$path="yaw/components/mac/";
$creation="ComponentCore";}

Figure 40 Specification of Variables

The model variables are annotated with UML Constraints owned by the component
(RtUnit, System, etc.) denoted in the ownedRule of the component (Figure 41) and in
the “Context” attribute of the constraint (Figure 41).

= €] Starting
— t ownedRule (1)
+ {7 StartingApplication_Path %1 StartingApplication_Path
+ t, ownedAttribute (1)

= Properties 2 ot BB =[]

UML Name | startingApplication_Path
+ t ownedOperation (1)
= £1 MEMC _ Visibility public
- t ownedRule (1) _
+ {?} MEMCApplication_Path
+ t, ownedAttribute (2) Constrained eleme
= g T <] Starting
— t ownedRule (1)
+ {7} TCTUApplication_Path
+ t, ownedAttribute (2)
+ T EC
+ €] BP
— <1 MPFG-4 Fncoder PIM i [}

Context £] Starting \eel 2 2 (98] Specification = Applic

Figure 41 UML constraint for application component variables

The “Specification” attribute of constraint contains the declaration of the variables. The
variable annotation is captured in a LiteralString (Figure 42).

+ {2} StartingApplication_Path 3 StartingApplication_Path
+ t, ownedAttribute (1)

UML
+ t ownedOperation (1) _

— t ownedRule (1) = 2 = = = = = — R
5 & MEMCApplication Path 0 &8 @) (8] Specification = ApplicationVariables="$Path="/components/" |ga| |i| 9
+ 1, ownedAttribute (2) © @ Edit Literalstring o))
- £ Ty
~ t_ ownedRule (1) Name |applicationVariables

+ {7} TCTUApplication_Path Value $Path="/components/"
+ t, ownedAttribute (2)
+ €] EC
+ &1 BP

— #1 MPEG-4 Encoder PIM T —
. o @ | oK

e

Figure 42 Annotation in a UML constraint for variable specification

Then, the constraint is associated with an element model that is included in the
ConstrainedElement attribute of the UML constraint (Figure 41). The
ConstrainedElement attribute denotes the model element which the variables annotated
in the constraint are applied. This association is captured by using and UML link
between the constraint and the model element.

It is necessary to distinguish which element is the owner of the constraint and the
element to be specified by the variables of the constraint. In Figure 43, there are 4
constraints (“MAC_LMAC states facets”, “MAC _LMAC varibles”,
“MAC _InterfacesFolder LMAC common” and “MAC_Folder LMAC”).

-43 of 77 -

PHARAON User Manual

References

«filesFolder»
Imac

«filesFolder»

facets ‘

«filesFolder»
states

T /

~ i s 7

«abstraction» *, «abstraction» | «abstraction» 7 }/
«allocated» «allocated» ! «allocated» - s
~ v gt - /,' /
«rtUnit» ez «abstraction» / ;,"
ccomponents | _____callocated | “fles
MAC_LMAC_variables AN Imac ComponentCoreH v
{slanguage="c++"; £
$path="yaw/components/mac/"; :
$creation="ComponentCore"; }] «files
A «abstraction» CompanentCoreCpp
1

«allocated»

«abstraction»

!
1
«allocated» !

—1 {$path_system="yaw/interfaces/";
}

T

MAC_InterfacesFolder LMAC ¢ nmmonj

«filesFolder»
mac

MAC_Folder_LMAC
{$path_system="yaw/common/";
}

Figure 43 Example of multiple constaints in the same application component

All these UML constraints are owned by the application component “Imac” (Figure 44).

- Z] Imac
-t ownedRule (4)

+

+
+
+

7} MAC_LMAC states facets

{7} MAC_InterfacesFolder_LMAC_common
{7} MAC_Folder_LMAC

7} MAC_LMAC variables

Figure 44 Constrains of the “Imac” application component

However, not all of these constraints are applied to the same model element, denoted by
the attribute “ConstrainedElement” of the constraints (Figure 45).

{z+ MAC_InterfacesFolder LMAC_common

{# MAC_LMAC_states_facets

UML Name \MAc_lnterfaceanlder_LMAc_common uML Name \MAC,LMAC,statESJa(ets
= Visibility public = Visibility public
Context =] Imac Context £]lImac i 55 2 98 Specific

Constrained eleme

B3 mac

@ MAC_Folder_LMAC

Constrained eleme

ComponentCoreH
ComponentCoreCpp
Ex facets

Eo states

 MAC_LMAC variables

UML Name |MAC_Folder_ LMAC
= Visibility public
Context £1Imac

Constrained eleme

B3 mac

UML Name |MAC_LMAC variables
= Visibility public
s Context < Imac el 62 @)

Constrained eleme

=lImac

Figure 45 Constraints with different constrained elements

4.5.1.

System Components

The model variables that may be associated with a component constraint are:

1. language

-44 of 77 -

MAC_LMAC_states_facets
= {$path="Imac/"}

PHARAON User Manual References

path
CFLAG
LFLAG
cc_compiler

cxx_compiler

NS kW

path_compiler

4.5.2. Language
The variable $language defines the coding language of the complete application.

4.5.3. Path

As was mentioned previously, at least the $path variable has to be defined in the
model. This variable has to be associated with the System component included in the
ApplicationView. Through this variable, the designer annotates the absolute path where
the application functionality files are allocated (Figure 46), which act as base paths for
the rest of the system. This is mandatory.

4.5.4. CFLAGS and LFLAGS

The model variables associated with the Sysfem component of the
ApplicationView can include the set of CFLAGs and LFLAGS required for the native
compilation of the application (Figure 46).

«system» L]
«Component»
Application_stereo_visio

{$path="/home/lecnidas/ZZZ_Tedesys_Mod_Alex/ftedesysffiles/";

Path Applicatio Definition
$CFLAG="-fmessage-length=0 -std=c99"}

Figure 46 SCFLAGsS for native compilation

4.5.5. Compiler and Compiler path

The model variables associated with the System component of the
ApplicationView can include the compiler (for C or C++) required for native
compilation and the path where this compiler is allocated (Figure 47). By default, gcc
and g++ are the compilers considered for compilation.

-450f 77 -

PHARAON User Manual References

«system» =
«Component» System_path
System_Application {$path="/home/lecnidas/LDPC/";

$cc_compiler="armv7I-timesys-linux-gnueabi-gcc";
$path_compiler="home/leonidas/compilers/";}

Figure 47 Compiler variable

4.6. Application Components

The model variables that can be associated with a RtUnit application component
constraint are:

1. language

2. path

3. path system
4. creation

5. CFLAG

6. LFLAG

4.7. Concatenation of paths

The creation of the makefiles from the information captured in the model requires the
paths of the different model elements to be exact. The criteria for composing these paths
is a concatenation of different paths.

«system»
«Component»
WF

WFModelVariables
{$path="/home/leonidas/yaw/files/";
------------------- $language="c++";
$CFLAGS="-fpermissive";}

Figure 48 Specification of the System’s base path

The base path is the $path annotated in the System component. This path is used for
creating the complete paths of the different files, filesfolder, etc. of the application
(Figure 48).

Then, each application component has its own relative path. In Figure 49, the
application component “Imac” has the associated constraint “MAC LMAC variables”.
This constraint specifies the $language, $creation and $path. In relation to the $path,
the base path for the files and files-folder associated with this component is
“home/leonidas/yaw/files/components/mac/” that is, the concatenation of the System’s
base path and the application component path.

-46 of 77 -

PHARAON User Manual References

«filesFolder» «filesFolder» MAC_LMAC_states_facets
Imac facets ‘] {$path="Imac/"}
«filesFolder» T
states s

T
«abstraction» *. N «abstraction» 3 sabelractions ¢ /‘ ',J’
«allocated» s «allocated» ! «allocated» e ‘,-‘ d
hy v i L ,“/ /
NI P «abstraction» / i
«Components I «allocated» | «file» /
MAC_LMAC_variables AN Imac ComponentCoreH 4

{slanguage="c++";
$path="yaw/components/mac/"; :
$creation="ComponentCore";} «file»

«abstraction» ComponentCoreCpp
«allocated»

«abstraction»
wallocateds MACInterfaceanIderLMACmmmonj

- e -1 {$path_system="yaw/interfaces/";
g }

MAC_Folder_LMAC T

R

{$path_system="yaw/common/";

Figure 49 Application components with different types of model variables

To complete the path of the files “ComponentCoreH” and “ComponentCoreCpp”
in Figure 49, to the previous path (“home/leonidas/yaw/files/components/mac/”), the
path associated with the Files is concatenated as well:
“home/leonidas/yaw/files/components/mac/lmac/”. Finally, the name of the attribute
“File name” of the File model element (see section 2.1) is concatened. Thus, the path of
the File is “home/leonidas/yaw/files/components/mac/Imac/ComponentCore.h”.

In the case of the FilesFolder “Ilmac”, it does not have any constraint associated.
In this case, the path is the System path (Figure 48) plus the application component path
(Figure 49) and the name of the FileFolder (or File):
“home/leonidas/yaw/files/components/mac/lmac/”

A diferent case is the specification of the path for the path “mac”. This path has an
associated constraint where a $path_system variable is annotated. In this, the creation of
the path does not consider the base path of the application component (in Figure 49,
“yaw/components/files/”). In this case, the System path (Figure 48) is concatenated with
the value of the 8path system variable and the name of the FilesFolder:
“home/leonidas/yaw/files/yaw/interfaces/mac/” and
“home/leonidas/yaw/files/yaw/common/mac/”.

When two or more constraints are associated with a File or FileFolder, this means
that there are two or more Files or FilesFolders with the same name but in different
locations (Figure 49, “mac” FilesFolder).

-47 of 77 -

PHARAON User Manual References

5.Concurrency View

In this view, the static threads of the system are defined. The static threads are created
when the aplication components associated with them are triggered. Aditionally, this
view includes the mapping of the application elements defined in the ApplicationView
on these threads.

The UML elements used in this view are:

1. UML Component for modeling the thread types and other Components in order to
define thread instances and the mapping of application elements onto these threads.

2. UML Abstraction for associating application instances to threads

3. UML generalization for relating the System component of ApplicationView with the
System component of this view.

Class diagrams are used for defining the thread types and for capturing the UML
generalization of the System components of ApplicationView and ConcurrencyView.

Composite structure diagrams are used for defining the thread instances and the
association application-thread.

5.1. Thread modeling

The threads are modelled as UML components specified by the MARTE
stereotype <<SwSchedulableResource>>. The threads execute a function, so each
thread requires an associated function. These thread functions are modeled as UML
operations attached to the SwSchedulableResource component. There are two different
cases for modelling the function threads:

A SwScheduleResource includes a number of functions to be executed concurrently.
The number of operations included in the SwScheduleResource is understood to be the
number of threads to be created, since a thread only can execute one function (Figure
50).

Several SwSchedulableResources includes only one UML operation (Figure 50).

«swSchedulableResource» «swSchedulableResource»
«Component» «Components
Thread_1 Thread_2

+ function_1() + function_3()
+ function_2()

Figure 50 Thread components

-48 of 77 -

PHARAON User Manual References

5.2. Thread structure

The thread structure is captured in a System component included in the view. The
threads structure is composed of instances of the SwScheduleResource components
previously defined (Figure 51).

«system»
«Component»
System_thread
structure

+ threadl : Thread_1 + thread2 : Thread_2
structure structure

Figure 51 Thread instances which compose the thread structure

In this view, the association between application components and static threads
associated with functions is established.

5.3. Application-Thread association

The System component of the ConcurrencyView is used in order to allocate the
application instances defined in the ApplicationView within the corresponding threads.
This System component should be specialized by the System component defined in the
ApplicationView. This specialization is modelled by means of a UML generalization
defined in a UML class diagram. Only one System component should be defined within
the ConcurrencyView package (Figure 56).

«system»
«Component»
System_application

i

«system»]
«Component»
System_concurrency

Figure 52 Generalization of the System component of the Concurrency View

By means of a UML composite structure diagram associated with the System
component, the application instances defined in the System component of the
ApplicationView within the theads can be mapped. The application component
instances are associated with thread instances by means of UML abstractions specified
by the MARTE stereotype <<allocate>> (Figure 53).

-49 of 77 -

PHARAON User Manual

References

«systemn
«Cornponents
System_concurrency

structure

\ + ipcsDriverAdaptation : ipcsdriveradaptatiol]

\ + licPduAdaptation : llcpduadaptatior

I [+ queuemgt : queuemnanagement

[+ dataMgt ; datamanagemen

| + phyAbstraction : phyabstractiol

structure

structure

structure

structure

structure

I
«abstractiof»
«allocatex

+ thread_1 ; Threa
structure

'
«abstractiof
«allocatex

+ thread_2 ; Threa
structure

|
«abstractich»
«allocates!
v

+ thread_3 : Threa:

structure

«abstraction»
wallocates!
v

«abstraction»
«allocates!
|

+ thread_4 : Threas

+ thread_5 : Threa:

structure

structure

Figure 53 Application-thread association

5.4. Initial function values

In some cases, the functions executed by threads have associated specific, initial
values to its parameters. For modelling that, a UML constraint should owned by the
System component of the view. In this constraint, there are annotated the name of the
functions and the values of their parameters by wusing the annotation
“$initValue=nameFunction(valuel,value2,value3)”.

-500f 77 -

PHARAON User Manual References

6.Memory Space View

The memory space view contains the components that identify the memory spaces
which represent the executables of the system. Thus, an executable is a memory space
in this methodology. These memory partitions are used for grouping application
components.

The UML elements used in this view are:

1. UML Component for modeling the memory partition types and other Components
in order to define executables

2. UML Generalization for relating the System component of the ApplicationView with
the System component of the MemorySpaceView.

3. UML Abstraction for associating application components to memory partitions.

Class diagrams are used for defining the memory partition types and for capturing
the UML generalization of the System components.

Composite structure diagrams are used for defining the memory partition
instances.

6.1. Process modelling

Memory partitions are modeled by the MARTE stereotype <<MemoryPartition>>
applied on a UML component (Figure 54).

L] L1

rnermoryPartition: rnernory Partition:
«C_omponents «Components
memoParkition_1 memoPartition_2

Figure 54 Memory partitions

6.2. Process structure

The executables are defined in a System component included in the view as
instances of the MemoryPartition components previously defined (Figure 55).

«systems»
«Component»
System_MemoryPartition_Allocation_Component
structure

[memorypartitiont | memoryPartitionz memoryPartition3
structure structure

structure

memoryPartition4
structure

Figure 55 Executables definition

-510f77 -

PHARAON User Manual References

6.3. Application Allocation structure

In this view, the allocaction of the application components to the memory partitions
(executables) is dealt with.

This System component is used in order to allocate the application instances
defined in the ApplicationView to the corresponding memory paritions. This System
component should be specialized by the System component defined in the
ApplicationView. This specialization is modelled by means of a UML generalization
defined in a UML class diagram. Only one System component should be defined within
the Memory Space View package (Figure 56).

«systems»
«Component»
Application_stereo_vision

I

«system»
«Companents
System_MemoryPartition_Allocation_Component

Figure 56 Specialization of the System component of Memory Allocation View

By means of a UML composite structure diagram associated with the System
component, the application instances defined in the System component of the
ApplicationView are mapped onto the memory spaces. The application component
instances are mapped onto memory partition instances by means of UML abstractions
specified by the MARTE stereotype <<allocate>>.

«system»
«Component»
System_MemoryPartition_Allocation_Component
structure

starting [« ion_| image [rectification |
BRI structure structure structure
I‘A_l é |
L .
; J . «abstraction»
~, «abstractions, K i «abstractioh» e
*, «allocate» | . “abSII"'BC"O”” «allocale\:}{ |
: b S 1
«allocate» et Y = L memoryPartition2 memoryPartition3
structure
triangle stereoMatching

structure

structure
P B
¥ .
«abstraction» 3 ks «abstraction»
«allocate» . ; «allocate»

memoryPartitiond

Figure 57 Memory partition allocation

In Figure 57, the yellow boxes are application components that are mapped onto
memory partitions.

-520f77 -

PHARAON User Manual

References

PDM Views

7. HW Resources View

The HwResourceView includes all the HW components required for the
specification of the platform architecture. These HW components act as a palette; using
instances of these HW components, the designer specifies the HW architecture structure

defined in the ArchitecturalView.

The UML elements used in this view are:

4. UML Components for modeling the HW component types

Class diagrams are used for defining the HW components.

The MARTE stereotypes used to specify the HW components that can be captured
in the HwResourcesView are shown below.

UML2 Diagram elements

MARTE profiles

MARTE stereotypes

Component

HRM

HwProcessor
HwRAM
HwROM
HwCache
HwDMA
HwBus
HwMedia
HwEndPoint
HwBridge
HwI O
HwPLD
HwASIC
HwDevice
HwSensor
HwISA

Table 4 MARTE stereotypes used for refining the HW platform

-530f 77 -

PHARAON User Manual References

I = =
«hwProcessars «hwCaches <hwCaches
<Components <Components «Components
ARMI InstructionCache DataCache
<HwPracessars HwCaches «HwCaches
caches=[DataCache, InstructionCache] e type—data
frequency=(400,MHz) [e Size=(5,KB) memmarySize=(8,k8)
frequency=(250,MHz) frequency=(250,MHz)
= <
<hwBus:» «hwRAMs <hwl_Os
«Companents «Components «Components
AMBA BAM 1.0

| «HwBLSz HwWRAM:z
wordwidth=(32, bit) frequency=(250,MHz)
Frequency=(400,MHz) memarySize=(32,MB)

Figure 58 HW platform resources

7.1. HW Processors
The HW processors are modelled by the MARTE stereotype <<HwProcessor>>.

7.2. Processor ISA

The HwProcessor can be more specifically defined by an ISA. The MARTE stereotype
<<HwISA>> is applied to a new UML component. This HwISA component is
associated with the HwProcessor through the HwProcessor attribute ownedISAs. Two
attributes of the HwISA stereotype are mandatory for the PHARAON methodology:

family: NFP_String. Defines the ISA family
type: ISA_Type. Specifies the ISA type.

The Isa_type includes:
» RISC: Reduced Instruction Set Computer.
» CISC: Complex Instruction Set Computer.
» VLIW: Very Long Instruction Word.
» SIMD Single Instruction Multiple Data.
» Other.

» Undef.

In the case of this modeling methodology, the possible values of the family attribute are
DSP, GPU, CortexA, undef.

7.2.1. DSP processors

This value denotes that the processor is a DSP (Digital Signal Processor). The Eclipse

plug-in generates the entire code infrastructure to execute an application component in
this HW resource.

-54 of 77 -

PHARAON User Manual References

7.2.2. GPU processors
This value denotes that the processor is a GPU (Graphical Processing Unit). The Eclipse
plug-in generates the entire code infrastructure to execute functions in this HW
resource.

7.2.3. CPU co-processors

CPUs may have associated co-processors which may affect the compilation process. So,
the “CortexA” processor has an associated @ NEON co-processor
(www.arm.com/products/processors/technologies/neon.php). In the case that a
HwProcessor has an associated HwISA specified as “CortexA?” (where the “?”
represents any possible value, Figure 59), the eclipse plug-in generates the entire
infrastructure for using the NEON co-processor to execute functionality. The designer
can select which application components should be executed in the NEON co-processor.

«hwProcessor» «hwlISA»
«Component» «Component»
ARM_CortexA9 CortexA9
«HwProcessor» “HW|?Ai
ownedISAs=[CortexAg] family=CortexA9

Figure 59 HW Specification of a CortexA processor

7.3. Processor Caches

Each HwProcessor can have associated cache memories. The caches can be associated
with a HwProcessor by means of the attribute caches of the stereotype HwProcessor.
This stereotype attribute selects the UML components that are characterized by
HwCaches.

7.4. HW Processor variables

Some additional model variables have to be defined for specifying some required
platform characteristics. These variables are used for specifying the C and C++
compilers and the different LFLAGs and CFLAGs in order to implement the make files
for the system cross compilation. These variables are:

¢ S$cc_compiler: defines the name of the cross compiler for C.
¢ S$cxx_compiler: defines the name of the cross compiler for C++.

e S$path_compiler: defines the path where the cross compiler is
allocated.

¢ S$CFLAG: defines the compilation flags for the cross compilation.
e SLFLAG: defines the linking flags for the cross compilation.

These variables are specified in a UML constraint (Figure 60). This constraint is owned
by the HW Processor (the attribute “Context” has to contain the HWProcessor

-550f77 -

PHARAON User Manual References

component to be constrained) and associated with a HwProcessor component by uisng a
UML link.

«hwlSA» «hwProcessor» «hwProcessor» «hwISA»
«Component» «Component» «Components «Component»
CortexA8 ARM_CortexA8 DSP_Processor DSP
«HwISA» «HwProcessor» «HwProcessors «HwISAz

family=CortexA8 owned|SAs=[CortexA8] ownedISAs=[DSP] || family=DSP

ARM_CortexA8 Variables DSP_Variables

{3$cc_compiler="arm-none-linux-gnueabi-gcc"; {$cc_compiler="cl6x";
$cxx_compiler="arm-none-linux-gnueabi-g++"; $lflags="-z -w -x -c";
$lflags="- Irt"; $cflags="-mv6400";}

$cflags="- g";
}

Figure 60 HwProcessor compilers

7.5. Network

A network is modelled by using the MARTE stereotype HwMedia.

7.6. Network Interfaces

The network interfaces are modelled by the MARTE stereotype
<<HwEndPoint>>. In the PHARAON methodology, each HwEndPoint component
should have an attribute called /PAddress. In the attribute, Default Value specifies the
IP address by using an UML Literal String, in order to denote the IP address to enable
the TCP/IP communication. This /PAddress should be different for ach HwEndPoint
component. As a modelling constraint, only one instance of HwEndPoint component
can be included in an execution node.

7.7. 1/0 Components

The MARTE stereotype <<Hwl O>> models the HW component used as [/O
system device.

7.8. HW components’ Functional Modes

The HW components can have different associated functional modes that specify
different characteristics that define the HW component’s behaviour according to a set of
configuration parameters. These functional modes are defined by attributes: frequency,
voltage, dynamic power and average leakage. In addition, the transitions among the
functional modes are characterized as well. The transitions among modes are
characterized by the time consumption in the mode transition and the power
consumption in the mode transition.

In order to model these functional modes, the corresponding HW component
should have a UML state machine. In a UML state diagram, the HW component modes
and the mode transitions are captured. The HW component modes are represented as
UML states specified by the MARTE stereotype <<Mode>>. The mode transitions are

-56 of 77 -

PHARAON User Manual References

represented as UML transitions specified by the MARTE stereotype
<<ModeTransition>>.

For characterizing the functional attributes previously mentioned, some modelling
clements have been used. The first one is taken from the paper', specifically the
stereotype <<HwPowerState>>, in order to specify the frequency of the HW component
in this mode. The dynamic power of the mode is defined by the application of the
MARTE stereotype <<ResourceUsage>>, specifying the attribute powerPeak. In order
to define the last two attributes of a functional mode, voltage and average leakage, two
UML comments should be associated with the corresponding UML state. There, both
values are annotated. All the attribute values should be annotated as the MARTE
specifies in order to define the non-functional properties (value, unit).

In order to characterize the mode transitions, the power and the time consumption
have to be defined. The time consumption is defined in the attribute setup Time owned
by the stereotype HwPowerStateTransition defined in the previously mentioned paper.
The power consumption is specified by the stereotype <<ResourceUsage>>.

[StateMachinel

«modeTransition, hwPowerStateTransition, resourceUsage»
{setupTime=(0.1,ms)powerPeak=[(5,mw)]}

«mode, hwPowerState, resourceUsage»|
Statel
Transition0 «ResourceUsage»
«modeTransition, hwPowerstateTransition, resourcelsage» | POWerPeak=[(120,mw)]
{setupTime=(0.1,ms)powerPeak=[(5,mW)]} «HwWPowerstate»
frequency=(300,MHz)

«mode, hwPowerstate»

State0
«HwPowerState»
frequency=(300,MHz)

Transitionl

— @ State0
- t. ownedComment (2)
= <Comment> voltage=(1.2,V)
= <Comment> averageleakage=(100,mW)
+ L container (1)
— @ Statel
- t, ownedComment (2)
= <Comment> averageleakage=(100,mW)...
= <Comment> voltage=(1.2,V)

Figure 61 HwProcessor mode specification

' T. Arpinen, E. Salminen, T.D. Hémaildinen, M. Hinniikdinen. "MARTE profile extension for modeling dynamic power
management of embedded systems”. JSA, April 2012, Pages 209-219.

-57of 77 -

PHARAON User Manual References

8. SW Platform View

The SWPlatformView defines the operating systems that are in the HW/SW
platform. The operating systems are modelled by a UML component specified by the
stereotype <<OS>>. The attributes associated with this stereotype are:

<<QOS>>

type:String [1]

policy: SchedulingPolicyKind[1];

drivers: DeviceBroker [*]

interProcessCommunication: [1]

Figure 62 OS stereotype attributes

The type of the OS is defined in the #ype attribute (linux, windows, etc.). The attribute
policy defines the scheduling policy of the OS component.
The possible values of the SchedulingPolicyKind are:

e Undef: modeling the default policy of Linux systems

e FixedPriorityPre-emptive: a fixed priority rank to every process is
assigned, and the scheduler arranges the processes in the ready queue in
order of their priority. Lower priority processes get interrupted by
incoming higher priority processes.

® RoundRobin: the scheduler assigns a fixed time unit per process, and
cycles through them.

e FIFO: First In First Out simply queues processes in the order that they
arrive in the ready queue.

e FEarliestDeadlineFirst: whenever a scheduling event occurs (task
finishes, new task released, etc.) the queue will be searched for the
process closest to its deadline.

® RateMonotonic: static priorities are assigned on the bases of the cycle
duration of the job: the shorter the cycle duration is, the higher is the
job's priority.

e LeastLaxityFirst: it assigns priority based on the slack time of a process.
Slack time the time a job would take to finish if the job was started now.
It imposes the simple constraint that each process on each available
processor possesses the same run time, and that individual processes do
not have an affinity to a certain processor.

e Lottery: processes are each assigned a random number, and the scheduler
chooses one at random to select the next process.

e TableDriven: the scheduler applies a predefined fixed repetitive
schedule.

-58 0of 77 -

PHARAON User Manual References

e ShortestJobFirst. the scheduler arranges processes with the least
estimated processing time remaining to be next in the queue.

The driver attribute of the stereotype OS enables association of DeviceBrokers
with the OS component

The interProcessCommunication attribute defines the OS services that
automatically create the communication infrastructure in order to communicate
processes in the OS. Thus, code will be created ad-hoc depending on which
mechanism is specified for each OS instance. Five types of inter process
communication mechanism are currently supported for automatic code generation.
These types are:

¢ FIFO channels

e Sockets

® message queues
¢ shared memories
o files

Using this option, designers can easily explore the performance impact that
each one has on the final implementation and select the most suitable ones for each
system.

«05»
«Component»
Amstrong

«QS5»
type=Linux
drivers=[cmemk, dsplinkk, Ipm_omap3530]
interProcessCommunication=FIFO

Figure 63 OS component

8.1. Drivers

The OS components can have an associated set of drivers to provide access to
peripherals or to manage specific processing HW resources of the platform. Drivers are
modelled by the MARTE stereotype <<DeviceBroker>> applied on an UML
component.

A DeviceBroker driver can have associated properties that enable well-defined driver
specification:

e Repository: denotes the address where the driver can be downloaded.

e Parameter: denotes configuration information for the driver.

e Device: is the file for the control of the HW resource

-590f 77 -

PHARAON User Manual

References

8.2.

«deviceBroker»
«Component»
cmemk

parameters = phys_start=0x8C000000 phys_end=0x8E000000 pools=5x16,3x4194304,4x2097152
device = cmem

«deviceBroker»

«Components»

|pm_omap3530
device = Ipm0

«deviceBroker»
«Components
dsplinkk
+ device = dsplink

Figure 64 Driver for DSP management

Repository

The “repository” property denotes the url direction of the repository where the
driver can be downloaded in order to be installed in an automatic way. This property is
captured in a UML property included in the DeviceBroker component. The name of this
UML property should be “repository”. The address is annotated in the attribute “Default
Value” of the UML property, by using a UML Literal String attached to the “Default

Value” attribute.

8.3. Parameters

The “parameters” property denotes the set of paramaters required for a correct
configuration of a driver. This property is captured in a UML property included in the
DeviceBroker component. The name of this UMI property should be “parameters”.
Then, the set of parameters are annotated in an attribute “Default Value” of the UML
property, a UML Literal String attached to the “Default Value” attribute.

& model
+ 7. <Package Import> Ul
+ B2 Data Model
+ B3 Functional View
+/ B9 Application View
+ B3 CommunicationView
+ B3 MemoAlloc
+ £3 HWPlatform
=/ B2 SWPlatform
=] Amstrong
= £ cmemk
— t, ownedAttribute |
+ @ parameters
+ @ device
- =] dsplinkk

— t, ownedAttribute |

8.4.

«deviceBroker»
«Component»
cmemk
+ parameters : <...
+ device : <Undef...

By drivers 2
I Properties &%

@ parameters

Type <Undefined> a6
|s2)

Default value = ="phys_start=0x8C000000 phys_end=0x8E000000 pools=5x16,3x4194304,4x2097152" & s

c
=
r

Figure 65 “Parameter” driver property

Device

The “device”

property denotes the device property required for a correct

configuration of a driver. This property is captured in a UML property included in the
DeviceBroker component. The name of this UMI property should be “device”. Then, the

- 60 of 77 -

PHARAON User Manual

References

set of parameters are annotated in an attribute “Default Value” of the UML property, a
UML Literal String attached to the “Default Value” attribute.

= B model
& + B2 <Package Import> Ul
e + Ba Data Model
+ B3 Functional View
+ B2 Application view
+ B2 CommunicationView
+ B3 MemoAlloc
+ B3 HWPlatform
= B2 swrlatform
&1 Amstrong
= £] cmemk
~ t, ownedAttribute {
+ = parameters
+ B device
= £ dsplinkk
- t, ownedAttribute {
+ = device

«deviceBroker»
«Component»
cmemk
+ parameters : <...
+ device : <Undef...

B drivers 52 |

[Properties &2

= device

URL Is unique ® true false Visibility
_ Type <Undefined> ™) @ Multiplicity
_ Default value = ="cmem" W w w Aggregation

Figure 66 “Device” driver property.

-61 of 77 -

PHARAON User Manual References

PSM Views

9.Architectural View

The Architectural view focuses on the architectural aspects of the system related
to the instantiation and assembly of HW and SW platform components. The

Architectural view is displayed using a diagram where the following items are
described:

¢ Definition of the SW platform (e.g. OSs).

e Definition of the HW resources (processors, memories, buses, network,
etc.).

e Interconnection of these HW resources
e Association of the HW resources with OSs.
The UML elements used in this view are:

5. UML Component for modeling HW/SW architecture structure

6. UML Abstraction for associating OSs with computing resources

Composite structure diagrams enable the HW/SW architecture structure and the
different mappings onto the HW/SW resources.

9.1. Modelling of the HW/SW platform
architecture

The Architectural View contains a component specified by the stereotype
<<System>>. Through a composite structure diagram associated with this System
component, the instances of HW components defined in the HW Resources View are
specified and interconnected in order to create the HW architecture platform. These
interconnections are carried out through UML ports connected by UML connectors
(Figure 67).

-620f 77 -

PHARAON User Manual References

+ liruz: 05
structure

«abstraction:
aallocates
Al

W N
A
+ micro: ARME + microZ: ARMI + micro3: ARMS
structure structure structure

1,7—_} 1
+ ramZ: RAM "+ bus: AMBA {
Structure structure +raml: RAM
sthucture

Figure 67 HW & SW platform architectures

«abstractions
aallocates -

.)

»" «abstractions
wallocates

The System component also includes the definition of the SW platform
architecture. The SW platform architecture is composed of instances of the OS
components included in the SWPIlatformView.

Only one System component should be defined within the Architectural View
package.

9.2. Allocation of SW instances to HW
instances

The association of the OS instances with HW resources instances is modelled by
means of UML abstraction specified by the MARTE stereotype <<allocate>> (Figure
67).

9.3. Architectural Allocation

This System component should be specialized by the System component defined in the
MemorySpaceView and the System component defined in the ConcurrencyView. This
specialization is modelled by means of a UML generalization defined in a UML class
diagram. In this way, this new System component can refer to the MemoryPartition
instances defined in the MemorySpaceView and the thread instances defined in the
ConcurrencyView.

«system»
«Component»
System_MemoryPartition_Allocation_Component

T

«system»
«Component»
System Architecture

Figure 68 Specialization of the System component of Architectural View

-63 0f 77 -

PHARAON User Manual References

The MemoryPartition instances are allocated to SW resource instances. The
assignation of a MemoryPartition instance to a SW resource instance is done through a
UML abstraction where the MARTE stereotype <<Allocate>> has been applied.

«system»
«Component»
System Architecture
structure

memoryPartition 1
structure

memoryPartition2
structure

memoryPartition3
structure

[Al
[«abstraction» i
«allocate»
sibstraction»
~ «allocate»

memoryPartition4
structure

@

v
«abstraction»
~._ «allocates,

«@bstraction» <
«allocate»

W

amstrong
structure

«abstraction» I
«allocate»

structure

+ bus : Bus
structure

ram
structure

Figure 69 Memory partition allocation on HW/SW platform

9.4. Allocation on DSP

When the the memory allocation is done on a DSP, the allocation is captured by
means of a UML abstraction specified by the MARTE stereotype <<Allocate>>.
However, the mapping is captured directly from MemoryPartition instance to the DSP
resource, without any OS in the middle (Figure 70).

«system»
«Components
System Architecture
structure

‘memoryPartition1

memoryPartition2

structure

et

structure

F

«allocate»

«abstraction»

«abstracti
«allocate»

«abstraction» ,/
«allocate» ,*

,
amstrong
structure

n» T

memoryPartition3

structure

/
+ «abstraction»
/

; «allocate»

;

[poa | [_dp |

+ bus : Bus

\ structure

.

ram
structure

Figure 70 Memory partition allocations to DSP

The memory partition instance mapped onto the DSP HW resource has a
modelling restriction, only one application component can be allocated to a memory
partition that is mapped onto a DSP (Figure 70 and Figure 71).

- 64 of 77 -

PHARAON User Manual References

mean
structure

P
«abstractioh»
«allocatei&/
()

memoryPartition3
structure

Figure 71 Application component allocation to a memory partition

9.5. Multiple HW resources allocation

The modellining methodology enables multiple allocations of the memory spaces
in different HW resources of the platform as ca ben seen in Figure 72.

«system»
«Component»
System Architecture
structure

memoryPartition 1 memoryPartition2
structure structure
L
B abstraction>™~ =
«allocates

T
'«abstraction»*,
* «allocate»

.
amstrong . wabstraction»
structure v, «allocatex»

«abstraction» :
«allocate»

[poa 1 [

ram
+ bus : Bus structure
\ structure T

Figure 72 Multi HwResources allocation

9.6. Application Allocation to GPU

The application components are mapped onto memory partitions and then, these
memory partitions are mapped onto HW/SW resources of the platform. A special case
of application mapping is the mapping onto GPU HW resources. The mapping onto
these GPU HW resources requires the mapping of functions of the application
component. In order to enable this mapping, the functions to be executed in the GPU
resource have to be specifed in the model.

For this purpose, UML OpaqueBehaviours should be included in the application
component specification. These OpaqueBehaviours have to be named with the
corresponding functions that they represent (Figure 73).

L rrupuius e

= =] QCEncode

+ t_ ownedRule (1) @ step2_loop_scop
+ t, ownedAttribute (1) UML Name step2_loop_scop
- 1, ownedBehavior (2) _ §
@ step2_loop_scop Language EEE R Body Please select a language first
@ stepl_loop_scop
By Diagram application_files association
+ . Alloatel
+ . Allocatel
+ . Allocate2 Is abstract true @ false Is active true @ false

-650f77 -

PHARAON User Manual References

Figure 73 Application functions for GPU mapping

The GPU instance has to be presented in another UML composite structure
diagram of the System component,. Additionally, in this new diagram, the
corresponding instances of functions should be presented. These functions are captured
as UML OpaqueBehaviours and they are owned by the particular application
component. Instances of these OpaqueBehaviour functions are included in the
composite structure diagram. Then, these instances are allocated to the GPU resource by
using UML abstraction specifed by the MARTE stereotype <<allocate>>.

«system»
«Component»

System_Arhitecture_Allocation

structure

stepl_loop_scop

step2_loop_scop

structure

structure

«abstraction» * .

«abstraction»
«allocates

«allocate»

gpu
structure

Figure 74 Function-GPU allocation

9.7. Thread allocation

The threads can be allocated to processors in order to define the thread affinity
and balance the system for the processing load distribution. For this purpose, the thread
instances defined in the ConcurrencyView are mapped onto the processors by using
UML abstraction specifed by the MARTE stereotype <<allocate>> (Figure 75).

«system» E
«Component»
WF_Platform

structure

+ thread_1 : Thread
structure

+ thread_2 : Thread
structure

+ thread_3 : Thread
structure

+ thread_4 : Thread
structure

+ thread_5 : Thread
structure

[z T % v 2 N 2 - iz

«abstraction»

\

«abstractions

s, «allocatef
4 /

i
«abstractiof»
«allocate»

'
' v
«abstraction»)
«allocates «allocate} «abstraction»
: . «allocatem \ v
3 s .
v '] N N W
+ procesl : Procesor + proces?2 : Procesor + proces3 : Procesor + proces4 : Procesor
structure structure structure structure

Figure 75 Thread-processor mapping.

9.8. Processor identifier

In some cases, specifically for defining the affinity of a thread, an identifier
should label the processor instances of the platform. For that purpose, in the attribute
“Default Value” of the processor instance, associate a Literallnteger. In this element, the
identifier is annotated.

- 66 of 77 -

PHARAON User Manual References

10. Verification View

The Verification View defines the structure of the system environment. The
environment has to be thoroughly defined in order to enable the execution of the
performance estimation tools during the design process with appropriate inputs.

The environment structure consists of environment components that interact with
the system. Additionally, these environment components have the associated functional
elements that define their functionality.

For modeling the environment, a set of stereotypes of the UML standard profile
UTP has been selected.

10.1. Environment components

The environment components represent the devices that interact with the System.
The environment components are modelled as UML components. This set of UML
components is specified by means of stereotypes included in the standard UML Testing
Profile (UTP). The components that compose the system environment are defined in a
UML class diagram. These components are specified by the UTP stereotype
<<TestComponent>> (Figure 76).

«testComponent» @
«Components»
Camera

Figure 76 Environment component

10.2. Environment component Functionality

Each environment component has an associated specific functionality. This
functionality is modelled as UML components specified by the MARTE stereotype
<<RtUnit>> and the UTP stereotype <<TestComponent>> (Figure 77). The
environment application components should be included in the ApplicationView like the
rest of the application components of the system.

«rtUnit, testComponent» «rtunit, testComponent» «rtUnit, testComponent»
«Component» «Component» «Component»
Capturelmage DisconnectDevice ConnectDevice

Figure 77 Environment application components

All these RtUnit-TestComponent components can have the same associated
modeling elements (threads, file folder, files) as the rest of the application components.

These RtUnit-TestComponent application components have associated C files.
These C files are file artifacts defined in the Functional View. The files should be

-670f 77 -

PHARAON User Manual References

specified by the UML standard stereotype <<File>> and the stereotype
<<ApplicationFile>>. The files used for defining the functionality of the environment
should be typed as environment=true. The assignation of the file artifacts is done
through a UML abstraction specified by the MARTE stereotype <<allocated>> (Figure
78).

«rtUnit, testComponents»
SSomprenty «abstraction»

DisconnectDevice «allocated» P
oo s Ty @ 4
disconnect_device

«abstraction»
«allocated»

«rtUnit, testComponent» «file»
SERRMEGeT (SR connect_device

ConnectDevice «abstraction»
«allocated»
i s
connection_support

«file»

«rtUnit, testComponent»
«Component» «abstraction»

Capturelmage «allocated» «filex»
[SEeTTeeeEEs capture

Figure 78 Environment Application components with associated Files

10.3. Environment component structure

Each environment TestComponent component has internal parts that are the
environment application components. The internal functional structure of the
environment TestComponent component is captured by using intances of RtUnit-
TestComponent application components (Figure 79) in a Composite structure diagram
associated with the environment 7TestComponent component.

«testComponent»
«Component»
Camera
structure

connectDevice
structure

disConnectDevice
structure

capturelmage
structure

Figure 79 Application instances of an environment component

10.4. Environment component structure: ports

The communication is established through ports. The ports specify the interfaces
required/provided by the components for the communication. The ports are specified by
the MARTE stereotype, being defined as provided or required, where an interface is
associated.

The ports that have been specifed by the ClientServerPort stereotype are those of
the environment component (7estComponent component), as can be seen in Figure 80
(Camera TestComponent). These TestComponent ports are connected to the internal
application instance ports by using UML connectors (Figure 80). These application

-68 of 77 -

PHARAON User Manual References

instance ports have to be named similarly to the TestComponent port that they are
connected to (Figure 80).

«testComponents
«Component»
Camera
structure

Sorecioeite «clientServerPort»
L
«clientServerPort»

disConnectDevice - disD port_sys_disDev
port_sys_disDev E
structure L:l
capturelmage «clientServerPort»

Figure 80 Environment Application components

10.5. Environment structure

The environment structure is composed of insances of environment components
connected to the System.

The environment structure is modelled in a UML component specifed by the UTP
stereotype <<TestContext>>. The environment structure is modelled in a UML
composite structure diagram associated with this TestContext component. This
composite structure diagram contains instances of TestComponents and a property typed
by a System component; specifically, the System component defined in the Application
View since the port that interacts with the environment is defined in this System
component included in this model view; this System property should be specified by the
UTP stereotype SUT (Sytem Under Test).

«testContext»
«Component»
EnvironmentStructure
structure

camera «sUT»
structure + system : Image_Processing_Application_System
«clientServerport» «channel» i «clientServerPort» _structure

port_sys_conDev port_ConDev
«channel» «clientServerPort»

. port_disDev

«clientServerPort»
port_sys_disDev

«clientServerPort»

«channel»
. port_caplmage

«clientServerPort» []
port_sys_capimage

Figure 81 Definition of the environment structure

Then, in order to define the semantics of channels among the TestComponents and
the System, UML connectors should be specified by the stereotype Channel, specifying
the type of communication media defined in the CommunicationView.

10.6. Memory allocation

The Environment elements have to be allocated to memory spaces. The
TestContext component has to be associated with the System of the MemorySpaceView.
This System component should be specialized by the TestContext component defined in
the VerificationView. This specialization is modelled by means of a UML generalization
defined in a UML class diagram (Figure 82).

-69 of 77 -

PHARAON User Manual References

«systems»] «testContext» B
«Component» «Components»
Image_Processing_Application_System EnvironmentStructure

— I

«system»
«Component»
System_Memory_Partition

Figure 82 Generalization of Environment structure with the System component of the
MemorySpaceView

Then, the allocation on memory spaces of the environment component (instances
of TestComponent components) can be done (Figure 83).

«Component» =
System_Memory_Partition
structure

camera
structure

.
+ «abstraction»
'

«allocate»

;
memoryPartition4

structure

Figure 83 Allocation of environment component to the memory partitions

This view is not mandatory. The reason is that the methodology considers an
alternative solution. As described above, different files can be associated with the
system. Using this feature, systems with minimal environments can be modelled
directly indicating the source file with the environment code instead of creating a
complete specific view.

-70 of 77 -

PHARAON User Manual References
Annex
1.Methodology Stereotypes

Stereotype Attributes Profile
DataView PHARAON
FunctionalView PHARAON
ConcurrencyView PHARAON
ApplicationView PHARAON
MemorySpaceView PHARAON
HWResourcesView PHARAON
SwResourcesView PHARAON
Architectural View PHARAON
VerificationView PHARAON

Tupletype MARTE

CollectionType collectionAttrib:property [0..1] MARTE
DataSpecification size:NFP_Data [1] PHARAON

pointer:Boolean [1]
dataSpecifier: Specifier [1]
dataQualifier: Qualifier [1]
complexDataType : String [0..1]
File Standard UML
ApplicationFile parallelized: Boolean [1] PHARAON
highLevel: Boolean[1]
implementation: String [0..1]

-710f 77 -

PHARAON User Manual References
notModifiable: Boolean [1]
environment: Boolean [1]
SystemFile systemConfiguration: Boolean [1] PHARAON
systemMetrics:Boolean[1]
environment: Boolean [1]
RTL: Boolean [1]
TLM: Boolean [1]
FilesFolder parallelized: Boolean [1] PHARAON
highLevel: Boolean[1]
implementation: String [0..1]
notModifiable: Boolean [1]
environment: Boolean [1]
ClientServerSpecification MARTE
Pointer PHARAON
CommunicationMedia MARTE
StorageResource result : NFP Integer[0..1] MARTE
ChannelTypeSpecification | blockingFunctionDispatching:Boolean [1] PHARAON
blockingFunctionReturn:Boolean [1]
priority : integer [0..1]
timeOut:NFP_Duration [0..1]
ordering: Boolean [1]
NotificationResource MARTE
SharedDataComResource identifierElements: TypedElement= [0..*] MARTE
RtUnit isMain : Boolean MARTE
main : Operation [0..*]
srPoolSize: Integer [0..1]
srPoolPolicy : PoolMgtPolicyKind [1]

-720f 77 -

PHARAON User Manual References
SwSchedulableResource MARTE
create UML standard
Allocated MARTE
ClientServerPort kind : ClientServerKind [1] MARTE
provinterface : Interface [0..1]
reqInterface : Interface [0..1]
Channel commType: ChannelTypeSpecification [1] PHARAON
communicationEngine:
CommunicationEngineKind[1]
communicationOSService:
communicationOSServiceKind [1]

System PHARAON
MemoryPartition MARTE
Allocate MARTE
HwProcessor ownedISA : HwWISA [0...1] MARTE

caches : HwCaches[*]
HwRAM MARTE
HwROM MARTE
HwCache type : CacheType [1] MARTE
level: NFP Natural [0..1]

HwDMA MARTE
HwBus MARTE
HwMedia MARTE
HwEndPoint MARTE
HwBridge MARTE
Hwl O MARTE
HwPLD MARTE

-73 0f 77 -

PHARAON User Manual References

HwASIC MARTE
HwDevice MARTE
HwSensor MARTE
HwISA family: NFP_String [0..1] MARTE

type: ISA Type

DseProcessorParameter name: String[1] PHARAON
parameter: ProcessorParameter [1]
unit: Units [1]

max: String [0..1]

min: String [0..1]

step: String [0..1]

items: String [*]
Mode MARTE
HwPowerState frequency : NFP Frequency [0..1] MARTE
ModeTransition MARTE
HwPowerState Transition setUp : NFP Duration [0..1] MARTE
ResourceUsage powerPeak : NFP Power [0..1] MARTE

oS type:String [1] PHARAON
policy: SchedulingPolicyKind[1]
drivers: DeviceBroker [*]
interProcessCommunication:
InterProcessCommunicationMechanism [1]

DeviceBroker MARTE

-74 of 77 -

PHARAON User Manual References
TestComponent UTP
TestContext UTP
SUT UTP
Refine UML Standard
Reference PHARAON
Qualifier qualifier:Qualifier [1] PHARAON

Table 5 List of Stereotyes and attributes used in PHARAON methodology.

2.Methodology Enumerations

Enumeration

Values

Profile

Specifier

None

Char

signed char
unsigned char
short

short int
signed short
signed short int
unsigned short
unsigned short int
int

signed int
unsigned
unsigned int
long

long int

signed long
signed long int

unsigned long

PHARAON

-750f77 -

PHARAON User Manual References

unsigned long int
long long

long long int
signed long long
signed long long int
unsigned long long

unsigned long long
int

float
double
long double

void

Qualifier None PHARAON
Const
Volatile

register

PollMgtPolicyKind infiniteWait MARTE
timedWait
dynamic
exception

other

ClientServerKind proreq MARTE
provided

required

CacheType data MARTE
instruction

unified

ISA_Type RISC MARTE
CISC
VLIW
SIMD

-76 of 77 -

PHARAON User Manual

References

Other
Undef

ProcessorParameter

frequency

voltage

PHARAON

SchedulingPolicyKind

Undef

FixedPriorityPre-
emptive

RoundRobin
FIFO
EarliestDeadlineFirst
LeastLaxityFirst
Lottery
TableDriven
ShortestJobFirst

MARTE/PHARAON

CommunicationEngineKind

undef
default
MCAPI
OPenMP
OpenStream
TCP/IP

PHARAON

CommunicationOSServiceKind

undef
FIFO
Socket
messgeQueue
SharedMemory
File

PHARAON

InterProcessCommunicationMechanism

FIFO
Socket
MessageQueue
SharedMemory
File

PHARAON

-770of 77 -

